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Abstract

In an observational learning environment, the public belief λt forms a martingale

and converges almost surely to a limit belief λ∞. If {λt}t∈N is not uniformly bounded,

we invent a method to show that λt doesn’t converge to λ∞ in L1 or in mean.

1 Introduction

Learning through observation of actions plays a crucial role in daily life and economics

activities, and is studied by a large literature. A widely used argument in this literature is

the martingale argument introduced in Smith and Sørensen (2000). Let λt be the posterior

belief formed by the society after observing t− 1 actions. As more and more actions being

observed, the sequence of posterior beliefs forms a positive martingale. Positive martingale

converges almost surely to a limit variable with finite support. Then one can conclude that

the posterior belief must converge after observing enough actions, and learning is obtained

in this sense.

An unanswered question in the literature is: could we prove λt converges in other sense,

like in L1 or in mean? This question has both a theoretical and a practical motivation.

Theoretically, since λt is a martingale, E[λt] = E[λ1] for any finite t. It is natural to ask

whether E[λ∞] = E[λ1]. Practically, in solving an observational learning model, one often

finds that the public belief converges to two sets. For example, the public belief can either

converge to the point where everyone completely learns, or to the point where the action

provides no more information (confounded learning point). Convergence in mean will enable

one to compute the probability of posterior belief converges to each set. Also, convergence
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in L1 restricts the behavior of λt, by forcing it not leaving λ∞ too far and too fast before

converges back.

In this paper, we provide a negative answer to above question. Based on a simpli-

fied version of the classic model in Smith and Sørensen (2000), we show that the public

belief process λt doesn’t converge to λ∞ in L1 and in mean provided that {λt}N is not uni-

formly bounded. Our proof explores the power of Dunford-Pettis theorem to prove that

non-uniformly bounded {λt}t∈N is not uniformly integrable, and is general enough to be

applied in other models. We also provide a result which can establish L1 convergence from

convergence in probability, see Proposition 3.

In the rest of the introduction, we briefly describe the model, explain the intuition, and

briefly summarize the proof strategy.

We consider a standard observational learning model with two underlying states A and

B. With probability p, the player at period t would like to take an action matches the

underlying state; with the rest probability, player t would like to mismatch the state. Let

λt = Pr(B|α1,...,αt−1)
Pr(A|α1,...,αt−1)

be the posterior belief conditioned on first t − 1 actions. Using the

standard argument we can show λt is a martingale and converges to λ∞ almost surely. We

assume the private signal is of unbounded strength. The support of λ∞ consists of the

full learning point {0} and the confounding learning points λ∗ ∈ K, where λ∗ ∈ K solves

Pr(a|B, λ∗) = Pr(a|A, λ∗).
If {λt}t∈N is not uniformly bounded, λt increases on a sequence of shrinking sets. For

example, let α be a sequence of actions such that λt(α) increase to infinity. Let Et be the

set such that first t actions agrees with first t actions in α, then λt increases to infinity along

the decreasing sequence of sets Et. This reminds us a classic example where a sequence of

functions converges a.s. but not in L1 to a limit:

fn(x) =

0, if x ∈ [ 1
n
, 1);

n, if x ∈ (0, 1
n
).

Here fn converges to 0 point-wisely but not in L1 and in mean. The failure of L1 convergence

and mean convergence is due to that fn increases rapidly on a sequence of shrinking sets.

The public belief martingale λt meets the same problem. It also increases fast enough on a

shrinking sequence of sets which shrinks comparatively slow.

To prove the theorem, We use the Dunford-Pettis theorem to show λt is not uniformly

integrable. See Theorem 14. Then we explore the equivalence of L1 convergence, convergence
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in mean, and uniformly integrability of a martingale, see Theorem 15.

To our best of knowledge, there is no other literature discussing the convergence property

of public beliefs in observational learning model.

The paper is organized as following: in section 2 we give a detailed description of the

model; in section 3 we solve the model using standard martingale argument and state our

main result; in section 4 we prove our main result.

2 Model

We work with a simplified version of the classic model with unbounded private signal as in

Smith and Sørensen (2000).

We assume two underlying states A and B, and without loss of generality further assume

the true underlying state is A. Time is discrete, that is, t ∈ N. In each period t, there is

a player t who chooses between actions a and b. With probability p, player t is of type M ,

whose payoff is given as:

state A state B

action a u 0

action b 0 1

A type M player is a player who receives positive payoff from choosing the action that

matches the state. With probability 1− p, player t is of type DM , whose payoff is given as:

state A state B

action a 0 1

action b v 0

A type DM player is a player who receives positive payoff from choosing the action that

mismatches the state. We assume u 6= v 6= 1.

Below we provide a detailed description of the model with the primary purpose of intro-

ducing notations. Readers who are familiar with standard herding model can omit it.

As standard in the literature, player t observes actions of player 1 through player t− 1.

Such a sequence of actions is denoted by {α1, . . . , αt−1}, and is referred as the public history

ht at period t. Player t also observes a private signal st which is generated from a state-

dependent distribution. So player t’s information set before taking an action is given by

{α1, . . . , αt−1, st}. Before observing the public history and the private signal, each player

t holds a flat prior of underlying states, that is, Pr(A|∅) = Pr(B|∅) = 1
2
. Following the
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literature, a player’s private signal is identified with one’s posterior belief of state beingA only

after observing the private signal. With a slight abuse of notation, the above assumption is

st = Pr(A|st). With underlying state being state ∈ {A,B}, st is i.i.d drawn from distribution

F state(s). We assume the private signal strength is unbounded, that is, supp(F state(s)) =

(0, 1). To guarantee no private signal fully reveals the underlying state, we assume that

FA(s) and FB(s) are mutually absolutely continuous.

3 Description of Public Belief Process λt

In this section we define the public belief process λt and establish that λt converges almost

surely to a finite limit variable. The argument used is the standard martingale argument

first introduced in Smith and Sørensen (2000). Readers who are familiar with the standard

martingale argument can jump to Theorem 1, which is the main theorem of this paper.

The public belief at period t

λt =
Pr(B|α1, . . . , αt−1)

Pr(A|α1, . . . , αt−1)
, (1)

is the posterior likelihood ratio after observing the public history up to period t. Such public

belief is the same across any player acts in or after period t.

Using Bayes’ formula, we see

λt =
Pr(B|α1, . . . , αt−2) Pr(αt−1|B,α1, . . . , αt−2)

Pr(A|α1, . . . , αt−2) Pr(αt−1|A,α1, . . . , αt−2)

= λt−1
Pr(αt−1|B,α1, . . . , αt−2)

Pr(αt−1|A,α1, . . . , αt−2)
. (2)

Therefore, λt can be inductively defined once we know Pr(αt−1|state, α1, . . . , αt−2). From

now on, we write ht−1 for {α1, . . . , αt−2} in order to simplify notations.

By total probability formula,

Pr(αt−1|state, ht−1) =
∑

i∈M,DM

Pr(αt−1|state, ht−1, typet = i) Pr(typet = i|state, ht−1). (3)

By assumption we have Pr(typet = M |state, ht−1) = p.
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Player t− 1’s posterior belief

Pr(B|ht−1, st−1)

Pr(A|ht−1, st−1)
=

Pr(B|ht−1)

Pr(A|ht−1)

Pr(st−1|B)

Pr(st−1|A)
= λt−1

1− st−1

st−1

.

Therefore, if player t−1 is of type M , he/she will choose action a if and only if st−1 >
λt−1

λt−1+u
.

If player t−1 is of type DM, he/she will choose action a if and only if st−1 <
λt−1

λt−1+v
. Substitute

into 4, we have

Pr(αt−1 = a|state, ht−1) = p[1− F state(
λt−1

λt−1 + u
)] + (1− p)F state(

λt−1

λt−1 + v
). (4)

By the flat prior assumption, λ0 = 1. Therefore, public belief λt can be computed inductively

using formulas 2 and 4.

It is not hard to observe that

E[λt|ht] = E[λt−1
Pr(αt|B, ht)
Pr(αt|A, ht)

|ht]

= λt−1[
∑

αt∈{a,b}

Pr(αt|B, ht)
Pr(αt|A, ht)

Pr(α|A, ht)]

= λt−1. (5)

Therefore, we conclude that public belief process {λt}t∈N is a martingale.

Let us pause here to describe the underlying probability space on which {λt}t∈N is de-

fined. The probability space can be thought as either a space of actions (RN,RN, µA),

or a space of signals and types (Ω,Σ,P). A generic element in RN is denoted as α =

(α1, α2, . . . , αt, . . . ), where αt is action taken at period t. A generic element in Ω is denotes

as ω = (ω1, ω2, . . . , ωt, . . . ). Here ωt = (st, typet) specifies the private signal and the type of

player t. In short,

Ω = Πt∈N(0, 1)× {M,DM}.

The σ-field Σ and probability P is defined through the standard procedure of taking product

of infinite copies of probability spaces. For any S ∈ RN, µA(S) = P({ω ∈ Ω|α(ω) ∈ S}).
Here α(ω) is the realized sequence of actions along ω.

The martingale convergence theorem (see Theorem 11.5 in Williams (1991)) asserts that

a non-negative martingale converges almost surely to a limit random variable with a finite

support. Hence

λt → λ∞ a.s.,
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where supp(λ∞) < +∞.

The primary conclusion of this paper is that λt doesn’t converge to λ∞ in mean and in

L1 generically. We state the result here, and give the intuition and proof in next section.

Theorem 1 With λt defined as in 1, λt → λ∞ almost surely. But if up − v(1 − p) 6= 0,

fA(1) > 0, and {λt}t∈N is not uniformly bounded, then λt doesn’t converge in mean or in L1.

That is,

lim
t→∞

E[λt] 6= E[ lim
r→∞

λt],

lim
t→∞

E[|λt − λ∞|] 6= 0.

We conclude this section by proving that supp(λ∞) is generically a bounded set in R,

which will be used in the proof of the main theorem. Following theorem B.2 in Smith and

Sørensen (2000), λ ∈ supp(λ∞) if and only if λ = λPr(α|B,λ)
Pr(α|A,λ)

. Therefore, supp(λ∞) consists of

{0, K} where λ∗ ∈ K solves

Pr(α|B, λ∗) = Pr(α|A, λ∗).

Substitute 4 into above equation, we obtain that λ∗ solves

p[1− FA(
λ∗

λ∗ + u
)] + (1− p)FA(

λ∗

λ∗ + v
)− p[1− FB(

λ∗

λ∗ + u
)]− (1− p)FB(

λ∗

λ∗ + v
) = 0. (6)

We further compute that

d

dλ∗
(Pr(a|A, λ∗)− Pr(a|B, λ∗))

= −pfA(
λ∗

λ∗ + u
)

u

(λ∗ + u)2
+ (1− p)fA(

λ∗

λ∗ + v
)

v

(λ∗ + v)2

+pfB(
λ∗

λ∗ + u
)

u

(λ∗ + u)2
− (1− p)fB(

λ∗

λ∗ + v
)

v

(λ∗ + v)2
.

We have

lim
λ∗→+∞

(λ∗)2 d

dλ∗
(Pr(a|A, λ∗)− Pr(a|B, λ∗)) = (up− v(1− p))(fB(1)− fA(1)).

If fA(1) > 0, by lemma A.1 in Smith and Sørensen (2000) we have fB(1)−fA(1) < 0. Hence,

for generic (p, u, v) satisfying up−v(1−p) 6= 0, limλ∗→+∞(λ∗)2 d
dλ∗

(Pr(a|A, λ∗)−Pr(a|B, λ∗))
is either strictly positive or strictly negative. By continuity, d

dλ∗
(Pr(a|A, λ∗) − Pr(a|B, λ∗))

is strictly positive or strictly negative, for any λ∗ bigger than a constant M(p, u, v). Also,
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Pr(a|B,+∞) = Pr(a|A,+∞). Thus no λ∗ > M(p, u, v) can solve Pr(a|B, λ∗) = Pr(a|A, λ∗).
In other words, supp(λ∞) < M(p, u, v).

To summarize, we have

Lemma 2 If up− v(1− p) 6= 0 and fA(1) > 0, then supp(λ∞) is a bounded set in R.

Lastly, although the confounded learning point λ∗ may not exist for all parameters (p, u, v).

On the other hand, it is not hard to find examples where confounded learning point exists.

Let FB(s) = 2s− s2, FA(s) = s2, then for any (p, u, v) satisfying

min{u
v
,
v

u
} < p

1− p
< max{u

v
,
v

u
},

we have λ∗ exists.

4 Main Result

A classic example of a sequence of functions which converge almost surely but fail to converge

in L1 and in mean on a probability space is:

fn(x) =

0, if x ∈ [ 1
n
, 1);

n, if x ∈ (0, 1
n
).

(7)

The underlying probability space is (0, 1) equipped with ordinary Borel field and Lebesgue

measure. We check that fn → 0 but

lim
n→∞

E[fn] = 1 6= E[ lim
n→∞

fn] = 0.

From this example we can clearly see the problem of being almost surely converge but fail

to converge in mean. Despite that fn converges to 0 on a larger and large portion of (0, 1),

it rapidly increases on a shrinking sequence of sets. When the function values increases too

fast, convergence in mean fails.

The problem described in example 7 explains the intuition why λt fails to converge to

λ∞ in mean. After sketching the evolution of λt, we do see that λt increases on a shrinking

sequence of sets. Whether λt converges in mean, depends on how fast the sequence of sets

shrinks, and how fast λt increases.
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We first gives out a result which can be used to establish convergence in L1 from conver-

gence in probability.

Proposition 3 Let (B,B, ν) be a probability space, let {Xn}n∈N be a sequence of r.v. defined

on B with E[|Xn|] < +∞ for every n. If there exists a bounded r.v. X∞ (|X∞| < M for

some M > 0) such that Xn converges to X∞ in probability, then Xn converges to X∞ in L1

provided that

∃C > M, s.t. lim
n→+∞

∫
{b∈B||Xn|>C}

|Xn|dν = 0.

To prove theorem 1, we combine two powerful results in mathematics. The first result

(see Theorem 15) establishes the equivalence of convergence in mean, in L1 and uniform

integrability of a martingale. The second result (see Theorem 3 in Diestel (1991)) establishes

that a sequence of random variables (not necessarily martingales) being uniformly integrable

is equivalent to a certain induced finitely additive signed measure being countably additive

and positive. Then we show the induced measure is not countably additive.

To start the proof, we first give the necessary definitions and notations.

Let (B,B, ν) be a generic probability space. Let L1(B) be the normed space consists

of functions f : B → R with L1 norm ‖f‖1 =
∫
B
|f |dν. Let L∞(B) be the normed space

consists of functions f : B → R with L∞ norm ‖f‖∞ = inf{x|ν({b ∈ B|f(b) ≥ x}) = 0}.
Let ba(B) be the normed space with generic element m be a bounded signed finitely additive

measure on B, with norm ‖m‖ = supE∈B
∫
E
|m(E)|dν.

Definition 4 Let {Xn}n∈N be a sequence of random variables on B, {Xn}n∈N is uniformly

integrable if

lim
M→∞

∫
|Xn|>M

Xndν → 0 (8)

uniformly in n.

Let L1(B)∗ denotes the dual space of L1(B), let L∞(B)∗ denotes the dual space of L∞(B).

Following the standard theory in functional analysis, we have

Lemma 5 L1(B)∗ = L∞(B) and L∞(B)∗ = ba(B). For a generic g ∈ L∞(B),

g(f) =

∫
B

gfdν, ∀f ∈ L1(B).
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For a generic m ∈ ba(B),

m(g) =

∫
B

gdm,∀g ∈ L∞(B).

For details about lemma 5, and spaces L1(B), L∞(B), ba(B), see III.7 and IV.8 in Dunford

and Schwartz (1957).

An immediate corollary of lemma 5 is

Corollary 6 L1(B)k is isometrically embedded in ba(B).

The following Dunford-Pettis theorem states a sufficient and necessary condition for a

sequence of r.v. {Xn}n∈N being uniformly integrable.

Theorem 7 (Dunford-Pettis) Let {Xn}n∈N ⊂ L1(B) ⊂ ba(B), then {Xn}n∈N is uniformly

integrable if and only if

µ ∈ {Xn}n∈N
wk∗
− {Xn}n∈N ⇒ µ ∈ L1(B). (9)

Here the weak-star closure in 9 is taken in ba(B). For statement and proof of theorem 7, see

pg45-pg50 in Diestel (1991).

Let us view {λt}t∈N as a martingale defined on (Ω,Σ,P). Obviously {λt}t∈N ⊂ L1(Ω).

From now on, we reserve µ for elements in {λt}t∈N
wk∗
− {λt}t∈N.

By Dunford-Pettis theorem 7, {λt}t∈N is uniformly integrable iff there exists g ∈ L1(Ω)

such that µ(E) =
∫
E
gdP, ∀E ∈ Σ. Then µ must be countably additive on (Ω,Σ,P).

Following results from lemma 8 to theorem 14 show that µ cannot be countably additive.

To start, we need a result to describe the µ.

Lemma 8 If µ ∈ {λt}t∈N
wk∗
− {λt}t∈N ⊂ ba(Ω), then ∀E ∈ Σ, ∀ε > 0, there exists a

subsequence tk(E, ε) such that

|µ(E)−
∫
E

λtkdP| < ε.

Proof. Let χE be the indicator function of E ∈ Σ. By definition of weak-star closure,

∀ε > 0, there exists a subsequence tk such that

|
∫

Ω

χEdµ−
∫

Ω

λtkdP| < ε.

Following two lemmas can be proved directly.
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Lemma 9 µ is positive, that is, ∀E ∈ Σ, µ(E) ≥ 0.

Proof. Using lemma 8, ∀E ∈ Σ, ∀ε > 0, ∃tk such that

µ(E) >

∫
E

λtkdP− ε.

The result follows because λtk ≥ 0.

Lemma 10 µ is P-continuous, that is, if ∀E ∈ Σ such that P(E) = 0, then µ(E) = 0.

Proof. Using lemma 8, ∀E ∈ Σ,∀ε > 0, ∃tk such that∫
E

λtkdP− ε < µ(E) <

∫
E

λtkdP + ε.

If P(E) = 0, then
∫
E
λtkdP = 0. Then the result follows.

It is well known that a finitely additive measure µ is countably additive if and only if µ

is continuous at empty set. See Exercise 2.8 in Royden and Fitzpatrick (2010). Following

lemma rigorously states this fact.

Lemma 11 Let ν be a finitely additive measure on a measurable space (B,B). Then ν is

countably additive if and only if ∀Bn ∈ B satisfying

• B1 ⊃ B2 . . . Bn ⊃ Bn+1 ⊃ . . . ;

•
⋂
n∈NBn = ∅;

We have limn→∞ ν(Bn) = 0.

For notation abbreviation, we will write Bn ↓ ∅ for the sequence of sets as described in

lemma 11.

Proof. Let {En}n∈N be a disjoint countable sequence of sets. Define Bn =
⋃
k≥nEk. Then

Bn ↓ ∅. Then we have

ν(∪̇n∈NEn) =
n−1∑
k=1

ν(En) + ν(Bn)

for any n due to finite additivity of ν. Then

ν(∪̇n∈NEn) =
∞∑
k=1

ν(En)
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if and only if limn→∞ ν(Bn) = 0.

Using lemma 3, we can easily obtain a proposition which describe an if and only if

condition for µ being countably additive.

Proposition 12 µ is countably additive if and only if ∀Bn ↓ B with P(B) = 0, we have

limn→∞ µ(Bn) = 0.

Proof. For any Bn ↓ B with P(B) = 0, there is associated sequence B̃n=̇Bn − B such that

B̃n ↓ ∅. That µ is countably additive if and only if limn→ µ(B̃n) = 0, which is equivalent to

limn→(µ(Bn)− µ(B)) = 0. But µ(B) = 0 due to lemma 10.

However, we can construct a sequence of sets Sn decreasing to a null set S but with

limn→∞ µ(Sn) > 0.

Let M be an upper bound of supp(λ∞). If {λt}t∈N is not uniformly bounded, ∃T such

that {ω ∈ Ω|λT (ω) > M} 6= ∅. Define

Sn = {ω ∈ Ω|λT+k(ω) > M for k = 1, . . . , n}.

It is obvious that Sn ⊃ Sn+1. Also,⋂
n∈N

Sn = {ω ∈ Ω|λt(ω) > M, ∀t ≥ T + 1}.

This intersection is obviously a null set since limt→∞ λt = λ∞ almost surely, and supp(λ∞) <

M .

Following lemma is a key observation.

Lemma 13 limn→∞ limt→∞
∫
Sn
λtdP > 0.

Proof. First we note that

lim
t→∞

∫
Sn

λtdP =

∫
Sn

λT+ndP =

∫
A(Sn)

λT+ndµ
A.

This is because ∀t ≥ T + n, we have E[λt|Sn] = E[λT+n|Sn].

Let αT+n be a sequence of actions up to period T + n. By definition,

λT+n(αT+n) =
Pr(B|αT+n)

Pr(A|αT+n)
=

Pr(aT+n|B)

Pr(aT+n|A)
.

11



Here the last equality uses the assumption of flat prior. Then∫
A(Sn)

λT+ndµ
A =

∑
αT+n∈A(Sn)

Pr(aT+n|B)

Pr(aT+n|A)
µA(αT+n) = Pr(A(Sn)|B).

Here A : Ω→ RN is defined as A(ω) = α(ω), that is, A maps a sequence of realized private

signals and types ω into the sequence of actions happens along ω. Then

lim
n→∞

lim
t→∞

∫
Sn

λtdP = lim
n→∞

Pr(A(Sn)|B) > 0.

Here we conclude the limit is strictly positive because λt → ∞ with positive probability if

the true underlying state is B.

Using lemma 13, we obtain our first theorem.

Theorem 14 If µ ∈ {λt}t∈N
wk∗
− {λt}t∈N ⊂ ba(Ω), then µ is not countably additive for the

reason that limn→∞ µ(Sn) 6= 0. Hence {λt}t∈N is not uniformly integrable.

Proof. For any ε > 0, there exists subsequence tk such that

µ(Sn) >

∫
Sn

λtkdP− ε.

Therefore

lim
n→∞

µ(Sn) ≥ lim
n→∞

lim
k→∞

∫
Sn

λtkdP− ε > 0.

By Dunford-Pettis theorem, {λt}t∈N is not uniformly integrable.

The following well-known truth establishes that λt cannot converge to λ∞ in L1 and in

mean.

Theorem 15 Let {Mt}t∈N be a non-negative martingale, then Mt →M∞ a.s. The following

are equivalent:

• {Mt}t∈N is uniformly integrable.

• limt→∞
∫

Ω
|Mt −M∞|dP = 0.

• limt→∞E[Mt] = E[M∞].

See Theorem 13.7 in Williams (1991) for a proof.
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A Proof of Proposition 3

In this section, all notations possess the same meaning as in Proposition 3.

Lemma 16 ∃C > M such that limn→+∞
∫
{b∈B||Xn|>C} |Xn|dν = 0 implies

∀ε < C −M, lim
n→+∞

∫
{b∈B||Xn−X∞|>ε}

|Xn|dν = 0.

Proof. Arbitrarily choosing an ε < δ, we have

lim
n→+∞

∫
{b∈B||Xn−X∞|>ε}

|Xn|dν

= lim
n→+∞

[

∫
{b∈B||Xn−X∞|>ε}∩{b∈B||Xn|>C}

|Xn|dν +

∫
{b∈B||Xn−X∞|>ε}∩{b∈B||Xn|≤C}

|Xn|dν]

≤ lim
n→+∞

[

∫
{b∈B||Xn|>C}

|Xn|dν + Cν({b ∈ B||Xn −X∞| > ε} ∩ {b ∈ B||Xn| ≤ C})]

= lim
n→+∞

∫
{b∈B||Xn|>C}

|Xn|dν.

Here the last equation uses that Xn converges to X∞ in probability.

Lemma 17 If µ ∈ {Xn}n∈N
wk∗
− {Xn}n∈N, then ∀E ∈ B, we have µ(E) =

∫
E
X∞dν.

Proof. Arbitrarily choosing ε < C −M and E ∈ B, by lemma 8, there exists subsequence

nk such that ∫
E

Xnk
dν − ε < µ(E) <

∫
E

Xnk
dν + ε.
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We have

µ(E) <

∫
E

Xnk
dν + ε

=

∫
E∩{b∈B||Xnk

−X∞|>ε}
Xnk

dν +

∫
E∩{b∈B||Xnk

−X∞|≤ε}
Xnk

dν + ε

≤
∫
E∩{b∈B||Xnk

−X∞|>ε}
Xnk

dν +

∫
E∩{b∈B||Xnk

−X∞|≤ε}
X∞dν

+ε(1 + ν(E ∩ {b ∈ B||Xnk
−X∞| ≤ ε}))

≤ lim sup
k→+∞

∫
E∩{b∈B||Xnk

−X∞|>ε}
Xnk

dν +

∫
E

X∞dν

− lim sup
k→+∞

∫
E∩{b∈B||Xnk

−X∞|>ε}
X∞dν + ε(1 + ν(E)))

But

lim sup
k→+∞

∫
E∩{b∈B||Xnk

−X∞|>ε}
Xnk

dν

≤ lim sup
k→+∞

|
∫
E∩{b∈B||Xnk

−X∞|>ε}
Xnk

dν|

≤ lim sup
k→+∞

∫
E∩{b∈B||Xnk

−X∞|>ε}
|Xnk
|dν

≤ 0,

and

lim sup
k→+∞

∫
E∩{b∈B||Xnk

−X∞|>ε}
X∞dν

≥ −M lim sup
k→+∞

ν(E ∩ {b ∈ B||Xnk
−X∞| > ε})

= 0.

Therefore, we have µ(E) <
∫
E
X∞dν + ε(1 + ν(E)) for all 0 < ε < δ. Similarly we can prove

that µ(E) >
∫
E
X∞dν + ε(1 + ν(E)) for all 0 < ε < δ. Hence µ(E) =

∫
E
X∞dν,∀E ∈ B.

Using Dunford-Pettis theorem, lemma 17 implies that {Xn}n∈N is uniformly integrable.

Then using Theorem 13.7 in Williams (1991), we have Xn converges to X∞ in L1.
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