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Abstract

We analyze observational learning when a fraction of players are naive and act based

exclusively on their private information. Rational players are uncertain about the true

proportion of naive players. They simultaneously learn about this proportion and

about the payoff-relevant state. Confounded learning emerges as a robust phenomenon

in this environment, and could be globally stable-there’re environments where public

beliefs eventually settle down to confounded learning with positive probability, starting

from almost all current beliefs. We also show that correct learning is always globally

stable. In contrast, correct learning may not be globally stable when it arises due to

heterogeneous preferences as in Smith and Sørensen (2000).

1 Introduction

The seminal papers of Banerjee (1992) and Bikhchandani et al. (1992) established the pos-

sibility of herd behavior and information cascades. These papers analyze Bayesian players,

who receive boundedly informative private signals, and learn from the actions of previous

actors. When incorrect herding happens, social learning stops; all but a finite number of

players end up choosing the wrong action, even though society could learn the correct state

if it were able to aggregate the information available to individuals. The possibility of incor-

rect herding depends crucially upon the private signals being boundedly informative. Smith

and Sørensen (2000) show that complete learning is guaranteed, if players have common

preferences, and their private signals are of unbounded strength. They show that learning
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must necessarily be complete, i.e. the public belief must assign probability one to the true

state in the long run.

In this paper, we examine the implications of having a fraction of “naive” players, who

ignore the actions of their predecessors (or do not observe these actions). This assumption is

in line with experimental evidence. Laboratory experiments on herding models by Duffy et al.

(2016),Weizsäcker (2010) and Ziegelmeyer et al. (2013) show that there exist individuals who

decide exclusively based on their own private information, ignoring prior actions. Provided

that the prior belief is not extreme, the presence of these naive people can potentially play

the same role as the assumption of unbounded signals, by ensuring that players’ decisions

always contain an amount of information that is bounded away from zero. Since each player

observed could be naive, his action statistically reveals his private information.

Following this intuition, it is straightforward to show that complete learning is guaranteed

for the rational players provided that the rational players know the precise proportion of naive

players, even when private signals are of bounded strength. However, it may be unrealistic

to assume that the rational players know the precise proportion of naive players. This leads

us to consider a model with higher-dimensional uncertainty – rational players are uncertain

both about the payoff relevant state, and about the proportion of naive players, and will

learn about both aspects as the game progresses. Our main finding is that complete learning

is possible, but it is not guaranteed. In the long run, learning could be confounded, with

the society’s limit beliefs assigning positive weight both to the true state – which is two-

dimensional – and its “opposite”, i.e. the state that is incorrect on both dimensions. That

is, if the true payoff relevant state is A and the proportion of naive players is L (for low),

society can assign positive probability to the pair (A,L) and to the pair (B,H). Since beliefs

about the payoff relevant state are interior at the confounded learning point, in the long run

each rational player still uses his private information to decide. Notably, confounded learning

arises even though all players have common values, i.e. identical preferences over state-action

pairs.1

The message of the previous paragraph can be restated more precisely as follows: our

model shows that there exist multiple stationary points of the stochastic process of public

beliefs — the complete learning point, and the confounded learning point. This raises ad-

ditional questions. Is either of these points locally stable – does there exist a neighborhood

of the stationary point Λ such that if the current posterior beliefs lie in this neighborhood,

1Smith and Sørensen (2000) show that confounded learning is possible when players do not have common
values. We discuss their work more fully later.
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then the process converges to Λ with positive probability? Is either of these points globally

stable – does the process converges to Λ with positive probability, starting from any current

posterior belief, for a large set of initial priors that allow learning ?

Our answers to these questions, in the context of our model, are:

• Complete learning is globally stable.

• Confounded learning is globally stable under several conditions. (See Theorem 14)

That confounded learning could be globally stable means such a pathological long run

learning result could arise whatever society’s current belief is. A social planner may want

to intervene and eliminate confounded learning. The global stability of complete learning

implies that the social planner only needs to generate a vague public signal to push society’s

belief away from the confounded learning point whenever society’s belief gets close. This

result is useful if precise public signals are expensive to generate or transmit.

In fact, complete learning is not always globally stable in models which permit confounded

learning. Indeed, we consider a simplified version of the model of Smith and Sørensen (2000),

where confounded learning arises because players have sufficiently heterogeneous preferences.

If the prior assigns enough weight to the wrong payoff relevant state, and the belief updating

rule is monotonically increasing, then confounded learning happens for sure for such priors,

even if private signal is of unbounded strength. The basic reason is that the model in

Smith and Sørensen (2000) has one-dimensional uncertainty, and in order to move towards

the complete learning point, the public beliefs process has to pass through the confounded

learning point, which is itself a stationary point. However, in our model, since uncertainty

is two-dimensional, passage through the confounded learning point is not required.

The paper is organized as follows. We first discuss the related literature. Section 2

sets out the model. Section 3 analyzes the evolution of society’s posterior beliefs along the

equilibrium path. In section 4 we explain the intuition for confounded learning, and provide

necessary and sufficient conditions for confounded learning to arise. In section 5 we compare

our model to a simplified version of the model in Smith and Sørensen (2000). We establish

that complete learning is not globally stable in this version of the SS model, but is guaranteed

in our model. Section 6 shows that confounded learning could be globally stable.

1.1 Related Literature

There is an extensive literature on observational learning. In this section, we focus our

attention on the papers that are most closely related.
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Smith and Sørensen (2000) (SS henceforth) provide a comprehensive analysis of observa-

tional learning, and also developed many of the technical insights that underlie the analysis

in the present paper. They were also the first to show that confounded learning is possible

when players have divergent preferences. 2 In SS, a fraction of players would like to choose

their action to match the state, while the remaining fraction prefer to mismatch action and

state. In our paper, the underlying economic environment that gives rise to confounded

learning is very different. Players have common values, and every player would like her ac-

tion to match the state. Since players do not also know the true proportion of naive players,

uncertainty is two-dimensional in our model, while it is one-dimensional in SS. Our substan-

tive results also differ. In SS, confounded learning could preclude the possibility of complete

learning. In our model, complete learning must happen with strictly positive probability

and is globally stable.

Bohren (2016) allows for naive players, and assumes that rational players have a wrong

but fixed belief about the proportion of naive players. She finds that if the belief is not too

wrong, complete learning is guaranteed, but for a large error, posterior-belief process may

eventually assign probability zero to the true state or fail to converge. Our results are very

different — there cannot be incorrect learning, and there can be confounded learning. These

differences arise since rational players use history to revise their beliefs on the true proportion

of naive players. Bohren and Hauser (2018) generalizes the previous work by allowing more

channels of mis-specifications. A player’s subjective distribution of private/public signals

can be different from the true distribution. As a result, a player’s subjective posterior belief

conditional on a given signal can be different from the correct posterior belief. A player’s

type is specified through his subjective beliefs of signal distribution and of other players’

types distribution. This generalizes the setting in Bohren (2016): a player could mistakenly

believe that private signal is uninformative and all other players hold the same wrong belief.

Such a player is a noise player whose action demonstrates no information. A naive player

in Bohren (2016) can be modeled as a player who correctly interpret the private signal but

mistakenly think other players all acts noisily. A (biased) rational player can be modeled as

a player who correctly interpret the private signal but holds a fixed wrong belief about the

proportion of naive player. They found that if each player’s interpretation of signals and

belief of other players’ types distribution are not too wrong, then all types correctly learn the

true state in the long run. Otherwise, different types may eventually disagree; some types’

2Easley and Kiefer (1988) examine individual learning (rather than social learning) and find that con-
founded learning is possible, for non-generic parameters.
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long run posterior beliefs may settle down while other types’ posterior beliefs keep cycle. It

is also possible that all types assign all the weight to the wrong state in the long run.

After completing the first draft of this paper, we found that it has antecedents in Bohren’s

unpublished Ph.D. thesis (Bohren (2012)), where also rational players learn the true pro-

portion of naive players. She provides an example with binary signals that shows that the

realized state and the opposite state could be indistinguishable in the long run. We believe

that the results presented here constitute a more systematic and comprehensive analysis

of the problem. In particular, we generalize the analysis to the case there is a continuum

of private signals, and we examine local and global stability of the stationary points. We

also establish that the existence of confounded learning is robust with small perturbation of

model primitives. In Bohren (2012), the confounded learning will disappear if the primitives

of the model are perturbed.

Other related literature include Eyster and Rabin (2010) and Acemoglu et al. (2010).

Eyster and Rabin (2010) assumes every player is rational but mistakenly think other players

are naive. They find incorrect herding could happen even with continuum actions and

unbounded signals. Acemoglu et al. (2010) assumes two types of players who differ in their

preferences. Confounded learning arises when preferences are sufficiently heterogeneous.

Wolitzky (2018) studies technology-adoption using a deterministic social learning model.

In his model, new players arrive continuously at a constant rate to a continuum population.

Each new player learns whether to adopt a new technology after sampling “K” outcomes

from the current population. The current technology generates a good outcome with a

known probability, and the new technology generates a good outcome with state-dependent

probabilities. Though the new technology always succeeds with a high probability under the

good state than the bad state, this high probability may or may not be higher than the success

probability of the current technology. If the success probability of the new technology under

the good state is lower than that of the current technology, the new technology actually

perform worse than the current one. However, it may still be efficient to adopt the new

technology under the good state for the reason that it introduces enough reduction in cost.

Wolitzky refers to above case as cost-saving technology innovation. A traditional case where

the new technology succeeds with higher probability than the current technology at the

good state is referred as outcome-improving innovation. One of Wolitzky’s finding is that

the complete learning (fully adoption of new technology at good state and fully rejection at

bad state) can never be reached if the initial adoption rate is separated from the efficient

adoption point by a line representing confounded learning. The intuition is that observations
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of “K” outcomes is uninformative when the adoption rate is close enough to the confounded

learning line, then the equilibrium dynamics move away from the efficient point, rather than

cross the confounded learning line and move close to the efficient point. To the best of my

knowledge, the above result is the closest result to my Theorem 18. Theorem 18 states that

the complete learning point can never be reached if it is separated from the initial belief

by a confounded learning point, for the reason that observations is uninformative near the

confounded learning point, hence the belief dynamics cannot cross the confounded learning

point.

2 Model

The model is an infinite horizon, discrete-time model. There is a two-dimension uncertainty:

payoff-relevant states Ω1 = {A,B} and proportions of naive players Ω2 = {L,H}. For

abbreviation, we shall refer ω1 ∈ Ω1 as “payoff state”, and ω2 ∈ Ω2 as “type state”.

In period 0, nature chooses one state out of four potential states

Ω = Ω1 × Ω2 = {AL,AH,BL,BH}

according to a common prior Λ0 = (λAH0 , λBL0 , λBH0 ). Throughout this paper, a belief over

the state space Ω is written as three ratios with the probability associated with state AL in

the denominator. For example: λAH0 = Pr(AH|∅)
Pr(AL|∅) .

In each period t ≥ 1, one player arrives. He chooses between actions {a, b} with the

objective to match the realized payoff state. The utility function u : {a, b} × Ω1 → {0, 1} is

identical for every player and is given as

u(a,A) = (b, B) = 1; u(a,B) = u(b, A) = 0. (1)

As standard in the literature, one player’s payoff depends only on his action and the realized

payoff state, and is independent from other players’ actions.

Before taking an action, each player observes a private signal St from a common signal

space. The distribution of the private signal depends on the realized payoff state. Following

the literature, we identify a player’s private signal St with his private belief st as if the payoff
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state is equally likely to be A and B:

st = Pr(A|St) =
Pr(St|A)1

2

Pr(St|A)1
2

+ Pr(St|B)1
2

. (2)

In other words, the private belief st of player t is the probability attached to payoff state

being A conditional solely on the private signal St. The distribution of st is denoted as

F ω1(s) with ω1 ∈ {A,B}. We assume St is i.i.d across players, and hence so is st. We further

introduce the following assumption:

Assumption 1 FA(s) and FB(s) are mutually absolutely continuous, non-atomic, and have

common support as

supp(FA(s)) = supp(FB(s)) = (s, s) ⊂ (0, 1),

where s < 1
2
< s. FA(s), FB(s) are twice continuously differentiable on (s,s).

The prior belief is not so extreme that naive players always choose one action:

s <
λBH0 + λBL0

1 + λAH0 + λBL0 + λBH0

< s. (3)

Note that here we do not make an assumption on the strength of private signals. All the

arguments apply to both bounded and unbounded private signals, provided that condition

3 is satisfied.

Rational players also observe the public history of previous actions. If player t is rational,

then he observes ht = (a1, . . . , at−1), i.e the sequence of actions taken in previous periods.

Naive players do not observe any previous actions. The realization of each player to be naive

is i.i.d across players. The probability that any player is naive is either pL or pH , depending

on the realized type state.

3 The Process of Learning

Our analysis focuses on the posterior belief over the state space Ω conditional on a realized

public history ht. Specially, we ask whether the society’s posterior beliefs settle down to a

limit belief, and whether this limit belief assigns all the weight to the realized state. Following

the literature, we say “the society learns” if the posterior beliefs settle down to a limit belief.

Furthermore, we say that “learning is complete” if the limit belief assigns all the weight to
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the realized state ω ∈ Ω. Complete learning guarantees information aggregation, and is of

particular interest.

In this section, we study how posterior belief evolves from period t to period t + 1. We

conclude that posterior beliefs always settle down as a result of martingale property. In other

words, society always learns.

First, we solve for the unique sequential equilibrium. Without loss of generality, from

now on we assume the realized state is AL. We introduce the following notation. Player t’s

information set is denoted as It = {st, P It}, where PI is an abbreviation used for “public

information”. If player t is rational, then PIt = ht; if player t is naive, then PIt = ∅. Player

t’s strategy σt is a function from It to a distribution over actions {a, b}. For each ω ∈ Ω,

strategies σ1, . . . , σt determines the probability of each history ht+1 ∈ {a, b}t. We use Pt to

denote the probability measure induced on Ht = Ω×{a, b}t, with the understanding that Pt
actually depends on some strategy profile. 3 Strategies σ = {σ1, . . . } form an equilibrium if

∀t

σt(It) =

a, if Pt−1(B|PIt)
Pt−1(A|PIt)

1−st
st
≤ 1;

b, if Pt−1(B|PIt)
Pt−1(A|PIt)

1−st
st
≥ 1.

(4)

This definition is actually quite intuitive. Because public information PIt is independent

of private belief st,
Pt−1(B|PIt)
Pt−1(A|PIt)

1−st
st

actually represents the posterior likelihood ratio of payoff

state being B over being A conditional on player t’s information set It. Therefore, definition

4 says σ is an equilibrium if player t choose the action matching the more plausible payoff

state conditional on his information set.

One immediate observation from definition 4 is that player t’s equilibrium strategy can

be represented as a cutoff rule in terms of his private belief st.

Lemma 2 Up to a tie-breaking rule, the unique equilibrium is given as

σt = a⇔

st ≥
λBH0 +λBL0

λBH0 +λBL0 +λAH0 +1
, if player t is naive;

st ≥ Pt−1(B|ht), if player t is rational.
(5)

In the above lemma, we assume action a is chosen when the player think two payoff states

are equally plausible. This tie-breaking rule is immaterial, since the probability of a tie is

zero due to continuous private belief.

3Here Pt(ω × ht+1) > 0 for all ω ∈ Ω and ht+1 ∈ {a, b}t, since naive players exist.
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From now on, we use σ to denote the equilibrium given in Lemma 2, use Pt to represent the

probability measure on Ht induced by the equilibrium, and use P to represent the probability

measure on H = Ω× {a, b}N induced by the equilibrium. When we talk about the posterior

belief conditional on ht, it is the posterior belief with respect to Pt−1. Since there are four

potential states {AL,AH,BL,BH}, we can summarize society’s posterior belief at period

t as a random vector of three likelihood ratios. With probability associated with the true

state AL in the denominator, we write the posterior belief Λt as

Λt ≡ (λAHt , λBLt , λBHt ) ≡
(Pt−1(AH|ht)
Pt−1(AL|ht)

,
Pt−1(BL|ht)
Pt−1(AL|ht)

,
Pt−1(BH|ht)
Pt−1(AL|ht)

)
. (6)

We denote the equilibrium probability of σt = α, ∀α ∈ {a, b} at state ω1ω2 with belief

Λt as φ(α|ω1ω2,Λt). To represent the equilibrium probability, it is convenient to introduce

random variable xt(Λt) for a belief Λt = (λAHt , λBLt , λBHt ) as

xt(Λt) =
λBHt + λBLt

1 + λAHt + λBLt + λBHt
. (7)

We can verify that xt(Λt(ht)) = Pt−1(B|ht). Then we have

φ(α|ω1ω2,Λt) = φ(α|ω1ω2, xt) =

pω2(1− F ω1(x0)) + (1− pω2)(1− F ω1(xt)), if α = a;

pω2F
ω1(x0) + (1− pω2)F

ω1(xt), if α = b.

Here and from now on, we use x0 =
λBH0 +λBL0

1+λAH0 +λBL0 +λBH0
to represent the probability assigned to

payoff state being B at prior belief (λAH0 , λBL0 , λBH0 ).

With posterior belief Λt defined, we can state the definitions of learning rigorously.

Definition 3 Given a history h ∈ {AL} × {a, b}N, the society learns along h if

t→ +∞⇒ (λAHt (h), λBLt (h), λBHt (h)) converges

and learning is complete along h if

(λAHt (h), λBLt (h), λBHt (h))→ (0, 0, 0).

At the beginning of this section, we vaguely state that the society learns if posterior beliefs

settle down. Here “settling down” is rigorously defined using the notion of convergence.
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Furthermore, since in Λt(h) the posterior probability associated with realized state AL is in

the denominator, Λt(h)→ (0, 0, 0) means that all the weight is assigned to AL.

The following lemma shows that λω1ω2
t , when restricted on {AL} × {a, b}N, forms a

non-negative martingale for ω1ω2 ∈ {AH,BL,BH}. The martingale convergence theorem

(Theorem 11.5 in Williams (1991)) states that a non-negative martingale almost surely con-

verges to a finite random variable. Therefore, we conclude that almost surely posterior beliefs

always settle down to a limit belief along the equilibrium, and the society (almost) always

learns.

Lemma 4 For ω1ω2 ∈ {AH,BL,BH}, {λω1ω2
t }t∈N forms a non-negative martingale when

restricted to {AL} × {a, b}N.

Proof. See Appendix A.

Proposition 5 There exists a null set E ⊂ {AL} × {a, b}N, such that for any sequence of

actions under the realized state h ∈ {AL} × {a, b}N − E, we have

(λAHt (h), λBLt (h), λBHt (h))→ (λAH∞ (h), λBL∞ (h), λBH∞ (h)), (8)

with λω1ω2
∞ < +∞, ω1ω2 ∈ {AH,BL,BH}.

In other words, conditional on realized state AL, the posterior belief (λAHt , λBLt , λBHt )

converges almost surely to a finite random vector.

Proof. This result follows directly from lemma 4 and the martingale convergence theorem

(Theorem 11.5 in Williams (1991)).

4 Possibility of Confounded Learning

In the previous section, we showed that society’s posterior beliefs settle down to a limit belief

almost surely. A natural question is whether the limit belief necessarily assigns all the weight

to the realized state AL, i.e. whether learning is complete. In this section, we conclude that

it is not necessarily the case. If the proportion of naive players in H-state is sufficiently higher

than in L-state, then it is possible that the limit belief assigns positive weights to both states

BH and AL, and 0 weight to states AH and BL. Under such a limit belief, any observed

actions happen with equal probability across BH and AL. Therefore, in the limit, even if

players still use their private information to decide, their actions stop providing information

regards the likelihood ratio of BH and AL. Following Smith and Sørensen (2000), we say
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“learning is confounded”. Confounded learning is very different from information cascade.

When learning stops due to an information cascade, the information contained in publicly

observed actions overwhelms any player’s private signal. As a result, all the players abandon

their private signals and herd. However, in confounded learning, the information contained

in public actions is inconclusive, and players still use private information to decide.

We can intuitively understand this result in the following way. Since society’s posterior

beliefs always settle down, the observed action frequency also settles down. Without loss

of generality, we can think in terms of the frequency of action b. To have positive weight

assigned to state BH, the observed limit frequency of action b must be plausible under BH.

When the payoff state is B rather than A, then both types of players are more likely to

choose action b. However, the increase of limit frequency of action b due to payoff state

change can be balanced by the type state changing from L to H. If the limit belief assigns

more weight on payoff state being B than the prior belief does, the rational players, who

observe the limit belief, are more likely to choose action b. There are fewer rational players

under state BH, hence the limit frequency of action b will move down.

To summarize, if the limit belief assigns more weight to the payoff state being B than

the prior belief does, then in state AL, actions b is generally less likely, but there is a

high proportion of rational players can counterbalance the effect. In state BH, action b is

generally more likely, but there is low proportion of rational players. These two forces can

be balanced, provided that there is a sufficient fall in the number of rational players from

AL to BH. In fact, this balance is a special case of Simpson’s paradox. The probability of

action b is strictly higher among rational players and among naive players under state BH

than under state AL. However, the average probability among all players could be equal

across these two states, as long as there is a sufficient change of proportion of naive players.

A similar argument shows that the limit belief cannot assign positive weight to AH

and BL. In fact, any observed limit frequency of action b is incompatible with state BL.

Knowing the limit belief, rational players know the frequency of action b should be higher

than observed if the state is BL. See Proposition 7 for an argument of AH.

Above findings generalize the observation in section 1.4 of Bohren (2012). Bohren stud-

ies learning with unknown proportion of naive players in a special example with symmetric

binary private signals. She observes that with proper parameters two different states may

be indistinguishable in the long run, for the reason that the probability of observable actions

is the same across these two states. Though her observation bears similar characteristic, our

findings are more general and insightful. With a symmetric binary signal structure, param-
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eters in her model must satisfy one “equation” to lead to incomplete learning. This means

incomplete learning is not a robust phenomenon in her model. With slight perturbation of

the parameters, incomplete learning disappears. Our model assumes a continuous private

signal structure. The condition of confounded learning is determined by inequality 10. Hence

confounded learning is a robust phenomenon in our model. The assumption of symmetric

binary signals also simplifies the argument. With proper parameters, the likelihood ratio

between these two indistinguishable states stops evolving immediately after herding. In our

model, as long as posterior belief at period t doesn’t equal the confounded limit belief, all

the likelihood ratios still adjust upon observing period t’s action. Therefore more dynam-

ics analysis is needed. We shall explore the dynamics property of our model in following

sections.

Smith and Sørensen (2000) finds confounded learning could arise when players have

sufficiently heterogeneous preferences. We remark that our result is quite different from

theirs. From the economics perspective, our model assumes all the players have common

values, and confounded learning arises because of the unknown proportion of naive players.

In the next section, we shall further explore the difference between our model and theirs

from the belief dynamics perspective.

In the rest of this section, we formalize above intuition of confounded learning’s existence.

The first observation is due to Smith and Sørensen (2000), and states that society’s limit

belief must be a stationary point of stochastic process Λt = (λAHt , λBLt , λBHt ).

Lemma 6 Let π = (πAH , πBL, πBH) ∈ R3 satisfying that πω1ω2 ≥ 0, ∀ω1ω2 ∈ {AH,BL,BH}.
Let

S = {h ∈ {AL} × {a, b}N|(λAH∞ (h), λBL∞ (h), λBH∞ (h)) = (πAH , πBL, πBH)}.

If P(S) > 0, then

πω1ω2 = πω1ω2

φ(α|ω1ω2,π)

φ(α|AL,π)
,∀α ∈ {a, b}. (9)

In other words, if stochastic process Λt converges to (πAH , πBL, πBH) with strictly positive

probability, then (πAH , πBL, πBH) must be a stationary point of Λt.

Proof. The result follows Theorem B.2 in Smith and Sørensen (2000).

Equation 9 says that πω1ω2 6= 0 implies φ(α|ω1ω2,π) = φ(α|AL,π). Intuitively, this

means that if limit belief (πAH , πBL, πBH) assigns positive weight to state ω1ω2 , then limit
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frequency of action α ∈ {a, b} must be indistinguishable across states ω1ω2 and AL.

Using Lemma 6, we can prove our intuition that the limit belief must assign zero weight

to states AH and BL.

Proposition 7 If stochastic process (λAHt , λBLt , λBHt ) converges to (πAH , πBL, πBH) with strictly

positive probability, then πAH = πBL = 0.

Proof. First, we have

φ(b|BL, x(π)) = pLF
B(x0) + (1− pL)FB(x(π)),

and that

φ(b|AL, x(π)) = pLF
A(x0) + (1− pL)FA(x(π)).

By definition fB(s)
fA(s)

= 1−s
s

, so fB(s) > fA(s) on (s, 1
2
) and fB(s) < fA(s) on (1

2
, s). Then it

follows that FB(s) > FA(s), if s ∈ (s, s);

FB(s) = FA(s), if s ∈ [0, s] ∪ [s, 1].

Due to assumption that x0 ∈ (s, s), we have φ(b|BL,π) > φ(b|AL,π).

Second, we have

φ(b|AH, x(π)) = pHF
A(x0) + (1− pH)FA(x(π)).

To have φ(b|AH,π) = φ(b|AL,π), we must have x(π) = x0. But if this is the case, then

φ(b|BH,π) = FB(x0) 6= FA(x0) = φ(b|AL,π),

which means πBH = 0. That is, x(π) = x0 implies that zero weight must be assigned to

state BH. We have shown that zero weight must be assigned to state BL in the first part of

this proof. Therefore, x(π) = x0 implies that zero weight must be assigned to payoff state

being B under belief π, and this is a contradiction.

In the next proposition, we rigorously prove that the limit belief can assign positive

weight to state BH if it assigns more weight to payoff state being B. We can also prove that

such a limit belief must be unique.
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Proposition 8 If

φ(b|AL, s) > φ(b|BH, s) (10)

then there exists unique π∗BH > max{ x0
1−x0 ,

1−pH
1−pL
} such that

φ(b|AL, (0, 0, π∗BH)) = φ(b|BH, (0, 0, π∗BH)) (11)

In other words, when condition 10 is satisfied, Λ∗ ≡ (0, 0, π∗BH) gives the unique limit belief

where the observed frequency of action b is compatible with state BH.

Proof. Let

D(x) = φ(b|BH, x)− φ(b|AL, x)

= [pHF
B(x0) + (1− pH)FB(x)]− [pLF

A(x0) + (1− pL)FA(x)]

be defined on x ∈ [0, 1]. Condition 10 is equivalent to that D(s) < 0. Since FB(x0) > FA(x0),

D(x0) > 0 and D(s) > 0 always hold. We have

D′(x) = (1− pH)fB(x)− (1− pL)fA(x).

By definition fB(s)
fA(s)

= 1−s
s

, so D′(x) > 0 on (s, 1−pH
2−pH−pL

) and D′(x) < 0 on ( 1−pH
2−pH−pL

, s).

Thus, there is an unique x∗ ∈ (max{x0,
1−pH

2−pH−pL
}, s) such that D(x∗) = 0. Uniqueness of

π∗BH follows directly.

We conclude this section by stating that long run learning is either complete or con-

founded.

Proposition 9 If stochastic process (λAHt , λBLt , λBHt ) converges to (πAH , πBL, πBH) with pos-

itive probability, then either (πAH , πBL, πBH) = (0, 0, 0) or (πAH , πBL, πBH) = (0, 0, π∗BH),

where π∗BH solves equation 11. In other words, learning is either complete or confounded.

Proof. This follows directly from Lemma 6 and Proposition 8.

5 Complete Learning is Globally Stable

In the last section, we show that long run learning needs not to be complete despite the

existence of naive players. In this section, we show that although complete learning will not

14



M stateA stateB MM stateA stateB
a u 0 a 0 1
b 0 1 b v 0

Table 1: Payoff Tables of the simplified SS model

arise for sure, for a generic prior it will arise with strictly positive probability. This is true

even if private signal is of bounded strength, as long as naive players’ actions are informative.

Therefore, the existence of unknown proportion of naive players still helps long-run learning.

Besides, in this section we shall see that such help does not only come from that naive

players’ actions are always informative. The effect of the “unknown proportion” is also

subtle. We shall show that in a simplified version of the model in Smith and Sørensen

(2000), confounded learning could preclude complete learning, provided that belief updating

rules monotonically increase and that prior belief assigns enough weight to the wrong state.

We shall see that complete learning never arise because the paths of belief evolution are

restricted in their model. The “unknown proportion” of naive players, however, allows more

freedom in belief’s evolution, by increasing the dimension of posterior beliefs from 1 to 3.

This section consists of two subsections. In the first subsection, we present simplified

version of SS’s model and show how complete learning can fail. In the second subsection,

we prove that complete learning always arise with strictly positive probability in our model.

5.1 Confounded Learning can Prevent Complete Learning

In this section, we consider a simplified version of SS’s model and show that: if the con-

founded learning point separates the prior belief and the complete learning point, then

complete learning can never happen.

The simplified SS’s model can be described as following: there are two payoff-relevant

states {A,B}. In period 0 nature chooses one state according to some common prior λ0 =
Pr(B|∅)
Pr(A|∅) ∈ (0,+∞). In each period t ≥ 1, there is one player arrives. This player t can either

be a “Match” type or a “Mismatch” type. The Match type chooses between actions a, b

to match the realized payoff state; the Mismatch type chooses from the same action set to

mismatch the realized payoff state. The payoff table for each type is given as in Table 1.

The probability of player t to be a Match type is commonly known as p ∈ (0, 1). Both types

of players observe the realized history and a private signal St whose distribution depends on

the realized payoff state. We also identify one player’s private signal with his private belief

through st = Pr(A|St) as if the prior is flat. We assume that St, and hence st are i.i.d across
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players. The distribution of st under state ω is denoted as F ω(s). We further assume that

FA(s) and FB(s) are mutually absolutely continuous, have common support (0, 1) and are

both non-atomic.

The differences between our model and SS’s model are in two perspectives. First, players’

types are different. In our model, every player wants to match the realized payoff state. The

type is specified by whether a player observes the realized history. In SS’s model, every

player observes the realized history. The type is specified by whether a player want to match

the realized state. Second, in our model, the distribution of players’ types is unknown. In

SS’s model, however, the proportion of players who want to mismatch the realized payoff

state is known as 1 − p. Here, we only consider SS’s model with unbounded private signal

strength. With unbounded private signals, it is not the bounded private signal that leads to

the failure of complete learning.

Below we intuitively describe the reason that complete learning may never arise. The

rigorous statement and proof are deferred to Appendix B.

Let us assume the realized payoff-relevant state to be A. Let society’s posterior belief

at period t be denoted as likelihood ratio λt = Pr(B|ht)
Pr(A|ht) . Then complete learning means that

limt→∞ λt = 0. Let ϕ(α, λ) be the posterior belief updated from prior λ conditional on

observing action α ∈ {a, b}. Belief updating is monotonically increasing if ϕ(λ, α) is strictly

increasing in λ for α ∈ {a, b}. In other words, given two priors λ and λ′ with prior λ assigning

more weight to state being B than prior λ′ does; then the posterior belief updated from λ

must assign more weight to state B than the posterior belief updated from λ′ does, whatever

actions are observed. With proper parameters, confounded learning arise in this model (See

Proposition 17 for details). Existence of confounded learning is equivalent to ∃λ∗ ∈ R+ such

that

ϕ(λ∗, α) = λ∗,∀α ∈ {a, b}.

Then if λ0 > λ∗, the monotonicity assumption guarantees that

λt+1 = ϕ(λt, α) > ϕ(λ∗, α) = λ∗,∀t ≥ 0, ∀α ∈ {a, b}.

So if prior belief is above λ∗, monotonic belief updating rules prevent posterior belief move

across λ∗ to reach the complete learning, which is 0. Therefore, the society’s posterior belief

can never assign all the weight to the truth after any realized action sequence.

In Figure 1, we plot the belief dynamics with proper parameters and private signal
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Figure 1: An example where complete learning never happens

distributions FA(s) = s2, FB(s) = 2s−s2. In that diagram we have one confounded learning

point λ∗ ≈ 0.7746. The zig-zag blue line represents how belief evolves when prior is flat

and a sequence of action b is observed. We could intuitively see that if λ0 > λ∗, then

limt→+∞ λt(h) = λ∗ for any other possible action sequence h.

5.2 Complete learning always arise with strictly positive proba-

bility with unknown proportion of naive players

Let us start by reviewing the reason that complete learning never happens in the previous

section. In the simplified SS’s model, each confounded learning point λ∗ separates the space

of belief λt into two disconnected components. When the prior λ0 and the complete learning

point λ∞ = 0 are on disconnected components, the belief λt must pass through the con-

founded learning point λ∗ to reach the complete learning point. However,the monotonically

increasing belief updating rule prevents such a passing through.

This problem is solved, when we have unknown proportion of naive players. As we can

see in Figure 2, starting from a generic prior, posterior beliefs (λAHt , λBLt , λBHt ) can reach the

complete learning point without passing through the confounded learning point, due to the

fact that the uncertainty is of two dimension.

In this section, we rigorously prove that complete learning happens with strictly positive
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Figure 2: Global convergence to complete learning

probability for a generic set of priors defined as following:

PB = {(λAH0 , λBL0 , λBH0 ) ∈ R3
++|s <

λBH0 + λBL0

λBH0 + λBL0 + λAH0 + 1
< s, φ(b|AL, s) > φ(b|BH, s)}.

Here we need s <
λBH0 +λBL0

λBH0 +λBL0 +λAH0 +1
< s to guarantee that learning can happen. Without

this assumption, prior is so biased that each player just blindly follows the prior. We need

φ(b|AL, s) > φ(b|BH, s) so that the question is not trivial. After all, dropping this assump-

tion eliminates confounded learning (see Proposition 8), then complete learning must happen

with probability 1.

In Lemma 10, we prove that: for any prior belief Λ0 ∈ PB, and any current posterior

belief Λ ∈ R3
++, there exists a finite actions sequence hTt0 such that λBH(hTt0|Λ) < π∗BH .

Here we use Λ(hTt0|Λ) = (λAH(hTt0|Λ), λBL(hTt0|Λ), λBH(hTt0 |Λ)) to denote the posterior belief

obtained by observing history hTt0 conditional on Λ. In other words, Lemma 10 says, whatever

current belief Λ the society holds, after observing history hTt0 , the updated posterior belief

must have its third component strictly below π∗BH .

Then, conditional on seeing the action sequence hTt0 , posterior beliefs (λAHt , λBLt , λBHt )

must converge to (0, 0, 0) with strictly positive probability. Otherwise, posterior beliefs

(λAHt , λBLt , λBHt ) must converge to confounded learning point (0, 0, π∗BH) with probability 1.

However, this means the expectation of the limit of λBHt is π∗BH , which is bigger than the

limit of the expectation of λBHt , which is λBH(hTt0|Λ) since λBHt is a martingale. But this
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violates Fatou’s lemma which states that the limit of expectations must be no less than

the expectation of the limit. Finally, since hTt0 is finite, it happens with strictly positive

probability. Therefore, we can conclude that complete learning must arise with strictly

positive probability. Below is the formal proof.

Lemma 10 Given any prior belief Λ0 ∈ PB, for all current belief Λ ∈ R3
++, there exists a

finite sequence of actions hTt0 such that

λBH(hTt0|Λ) < π∗BH ,

where (0, 0, π∗BH) is the unique confounded learning point.

Proof. Starting from any current belief Λ, if λBH ≥ π∗BH , we construct following action

sequence

hTt =

a; if λt ≤ π∗BH ;

b; if λt > π∗BH .

Here λt ≡ λBHt +λBLt
1+λAHt

is a random variable defined for any posterior belief Λt. It represents the

likelihood ratio for payoff state being B over A under Λt.

It is directly to verify that φ(a|BH,λt)
φ(a|AL,λt) < 1 iff λt < π∗BH ; φ(b|BH,λt)

φ(b|AL,λt) < 1 iff λt > π∗BH ; and

that φ(a|BH,λt)
φ(a|AL,λt) = φ(b|BH,λt)

φ(b|AL,λt) = 1 iff λt = π∗BH . In other words, if λt < π∗BH , then observing

action a reduces λBH ; if λt > π∗BH , then observing action b reduces λBH .

Therefore, conditional on observing any action in the sequence hT , λBH must decreases.

If there exists infinitely many decreases which are bounded away from 0, then λBH must

eventually decreases below π∗BH . This is equivalent to show that: ∃ε > 0 and and a sub-

sequence tk, such that λtk is ε away from π∗BH . This is further equivalent to show that:

conditional on observing hT , λt cannot converge to π∗BH . We shall show such convergence is

impossible.

To show this, we need the following observation: if Λt ∈ {Λt ∈ R3
++|λt ∈ [λ0, π

∗
BH ]}, then

conditional on observing action a, λ must decrease. It is direct to verify that

λt ∈ [λ0, π
∗
BH ]⇒ φ(a|BH,Λt)

φ(a|AL,Λt)
≤ 1,

φ(a|BL,Λt)

φ(a|AL,Λt)
< 1;

φ(a|AH,Λt)

φ(a|AL,Λt)
> 1. (12)
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This observation follows from that:

λt+1(a|Λt) =
λBHt

φ(a|BH,Λt)
φ(a|AL,Λt) ↓ +λBLt

φ(a|BL,Λt)
φ(a|AL,Λt) ↓

1 + λAHt
φ(a|AH,Λt)
φ(a|AL,Λt) ↑

< λt, (13)

as long as Λt ∈ R3
++.

This observation has the following implication: if at period t̄, λt̄ ≤ π∗BH , then λt has to

first move away from π∗BH . It cannot move close to π∗BH until it drops below λ0. Therefore,

if λt → π∗BH , it must eventually approach π∗BH from above.

Since λt > π∗BH eventually, there exists a finite t̄ such that λt > π∗BH for all t > t̄.

Then by construction of hT , from period t̄, only action b is observable. It is direct to that
φ(b|BL,Λt)
φ(b|AL,Λt) > 1 always hold. So λBLt must increase to +∞. With assumption that λt → π∗BH ,

that λBLt → +∞ implies that λAHt → ∞. But we can verify that: observing action b while

λt > π∗BH must reduce λAH . So λAHt is bounded above by λAHt̄ .

Conditional on observing hTt0 , if (λAHt , λBLt , λBHt ) converges to the confounded learning

point (0, 0, π∗BH) with probability 1, then

π∗BH = E[ lim
t→+∞

λBHt |AL, λBH(hTt0|Λ)] > λBH(hTt0 |Λ) = lim
t→∞

E[λBHt |AL, λBH(hTt0 |Λ)]. (14)

Here the first equation follows from the assumption that posterior belief converges to con-

founded learning point with probability 1; the second equation follows from the fact that

λBHt is a martingale conditional on AL and hTt0 . But this violates Fatou’s lemma. There-

fore, conditional on hTt0 , complete learning must arise with strictly positive probability. We

also note that the probability of observing action sequence hTt0 is strictly positive since this

sequence is finite. So we have the following result:

Theorem 11 In an observational learning model with unknown proportion of naive players,

given any prior Λ0 ∈ PB, for all possible current belief Λ ∈ R++; complete learning arise

with strictly positive probability.

6 Confounded Learning could be Globally Stable

In the previous section, we show that complete learning shall arise with strictly positive

probability for all priors (λAH0 , λBL0 , λBH0 ) ∈ PB. In this section, we drive sufficient conditions

for a similar result holds for confounded learning.
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The first result we have is that confounded learning is “locally stable”: if the society’s

posterior belief Λt is sufficiently close to the confounded learning, with positive probability

posterior beliefs settle down to the confounded learning. This result is obtained as a corollary

of Theorem C.2 in Smith and Sørensen (2000). Below we give a rigorous statement.

A rigorous definition for a stationary point of a stochastic process to be locally stable is

given as following:

Definition 12 (Local Stable Stationary Point) Let (Ω,P,Ft) be a generic filtered prob-

ability space, and {Λt} : N×Ω→ Rn be an adapted discrete-time stochastic process. Then a

stationary point Λ∗ ∈ Rn is locally stable if there exists open neighborhood U 3 Λ∗ such that

P({ lim
t→+∞

Λt(ω) = Λ∗|Λt0 ∈ U}) > 0.

Theorem 13 Assume there exists (0, 0, π∗BH) satisfying equation 11 so that confounded

learning exists. If belief updating rule ϕ(α, λBHt ) = λBHt
φ(α|BH,Λt)
φ(α|AL,Λt) weakly increases in λBHt

around (0, 0, π∗BH) for α ∈ {a, b}, then (0, 0, π∗BH) is locally stable.

Proof. See Appendix C.

To strengthen the local stability of confounded learning into global stability, we need

to show: whatever society’s current belief is, society’s posterior belief moves into the local

neighborhood U with positive probability. In the rest of this section, we are going to show

something slightly stronger. For any given current belief Λ ∈ R3
++, and any ε > 0, we

construct a finite sequence of actions hCt0 . Conditional on current belief Λ and observing

actions sequence hCt0 , society’s posterior belief moves into the pre-determined ε-neighborhood

of confounded learning Λ∗. Since any finite sequence of actions happens with strictly positive

probability, we can obtain the global stability of confounded learning from the existence of

hCt0 .

The hCt0 is constructed in two phases. We first construct an infinite action sequence hC1

that can push society’s belief arbitrarily close to axis λBH . In other words, in the end of first

phase, society’s posterior belief Λ must satisfy that λAH and λBL are sufficiently close to

0. By doing so, we roughly turn the global stability problem of a three-dimension problem

into a one-dimension problem. Then, in the second phase, we construct an action sequence

consists of action b to push society’s belief into the pre-determined ε−neighborhood along

the direction of axis-λBH .

Intuitively, construction in phase I is done in the following way 4 : given any current

4See appendix D, especially lemma 20, for a rigorous version.
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belief Λt ∈ R3
++, select the action that reduces

λAHt
λBHt

+
λBLt
λBHt

. For a generic Λt, we can always

reduce
λAHt
λBHt

+
λBLt
λBHt

for that

(λAHt (a)

λBHt (a)
,
λBLt (a)

λBHt (a)

)
−
(λAHt
λBHt

,
λBLt
λBHt

)
= −φ(b|BH,Λt)

φ(a|BH,Λt)

((λAHt (b)

λBHt (b)
,
λBLt (b)

λBHt (b)

)
−
(λAHt
λBHt

,
λBLt
λBHt

))
.

By doing so,
λAHt
λBHt

+
λBLt
λBHt

form a decreasing sequence and are bounded from below, and hence

must converge. We conjecture that for a generic set of learning primitives,
λAHt
λBHt

+
λBLt
λBHt
→ 0.

Let us rewrite society’s belief Pt = (pAHt , pBLt , pBHt ) in probabilities instead of ratios. It is

direct to see that
λAHt
λBHt

+
λBLt
λBHt

=
pAHt
pBHt

+
pBLt
pBHt

. Now, let us assume that
pAHt
pBHt

+
pBLt
pBHt
→ c > 0, then

Pt must converges to a limit set Pcluster which lives on the plane determined by pAH

pBH
+ pBL

pBH
= c.

We conjecture such a limit set Pcluster cannot exist for a generic set of learning primitives.

To see the intuition of this conjecture, let us assume that Pcluster = {Ps1 , Ps2}, then we must

have coordinates of Pcluster satisfying following equations system:

Ps1(α1) = Ps2 ;

Ps2(α2) = Ps1 ;

pAHs1
pBHs1

+
pBLs1
pBHs1

= c,
pAHs2
pBHs2

+
pBLs2
pBHs2

= c.

Here the first row represents three equations that there must exist an action α1 such that

society’s belief moves from ps1 to ps2 conditional on seeing α1; the second row represents

another three equations that there must exist an action α2 such that society’s belief moves

from ps2 to ps1 conditional on seeing α2; the two equations in the third row follows the

assumption that
pAHt
pBHt

+
pBLt
pBHt

→ c. Therefore, if the cardinality of Pcluster is 2, then the

six coordinates in Pcluster must solve eight equations. This seems to be impossible under

a generic set of learning primitives. This intuition works if ‖Pcluster‖ ≥ 2. In fact, the

cardinality of Pcluster cannot be 1 with assumption that pAH

pBH
+ pBL

pBH
= c. 5 To move from an

intuitive conjecture to a rigorous statement, we need condition 1 in theorem 14. In other

words, if condition 1 is satisfied, then
pAHt
pBHt

+
pBLt
pBHt
→ 0 must hold. Interest readers can refer to

lemma 20 in appendix D for a detailed proof. From intuition described above and numerical

experiments we performed, we believe that condition 1 holds for a generic set of learning

5If ‖Pcluster‖ = 1, then the posterior belief in ratios Λs corresponding to ps ∈ Pcluster must satisfy
Λs ∈ {0,+∞} × {0,+∞} × {0, π∗

BH ,+∞}. We could verify that no such Λs can be stationary and satisfy
pAH
s

pBH
s

+
pBL
s

pBH
s

= c > 0.

22



primitives.

The ultimate goal of construction in phase I is to push society’s belief sufficiently close

to axis λBH , which is a stronger statement than
λAHt
λBHt

+
λBLt
λBHt
→ 0. After all, the ratio goes

to 0 could happen if λAHt , λBLt are large, but λBHt increases fast enough. If this is the case,

λt =
λBHt +λBLt

1+λAHt
→ +∞. We can actually compute the long run frequency of each action if

λt → +∞ in a sub-sequence tk. (See lemma 27 in appendix D for a detailed computation.)

Such long run frequencies imply that λAHtk → 0 and λBHtk → 0 if and only if condition 2 in

theorem 14 holds.

Therefore, with condition 1 and 2, we can push society’s belief arbitrarily close to axis

λBH . Depending on the ε in the pre-determined ε−neighborhood, we can determine a proper

period to stop pushing the belief closer. And the construction in phase I is complete.

Let us denote the society’s belief at the end of phase I as ΛI . As long as λAH , λBL

are negligible comparing to λBH , to push the belief towards Λ∗, we just need to push λBH

towards π∗BH . This can be done by action b for that φ(b|BH,λ)
φ(b|AL,λ)

< 1 if λ > πBH and that
φ(b|BH,λ)
φ(b|AL,λ)

> 1 if λ < πBH . 6 With condition 4 in theorem 14, λBH can not jump across π∗BH .

Therefore, we could use a long sequence of action b to push society’s belief from ΛI into the

pre-determined ε−neighborhood, provided that λAH

λBH
+ λBL

λBH
stays close to 0.

The only thing needs to worry in phase II is that λBL

λBH
may increases too much, which

implies that λBL is no longer negligible, comparing to λBH . 7 In general, we can control

the ratio of λBL

λBH
in phase II by shrinking it really small in phase I. However, shrinking λBL

λBH

doesn’t solve the problem if λBHt (hC1
t |Λ) → +∞. If this is the case, then shrinking λBL

λBH
in

phase I comes at the cost of λBH explodes, and a super long sequence of actions b to push

λBH close to π∗BH in phase II. It is not clear that λBL

λBH
stays negligible after seeing a super

long sequence of actions b, even if it starts with a super small value. In proposition 35 we

deal with this situation. With condition 3 in theorem 14, we can always push the society’s

belief into a position where λBH is bounded above while λBL

λBH
is arbitrarily small. In Figure

3, an example of beliefs’ movement in phase II is depicted.

The set of learning primitives that satisfy condition 2 and 3 in theorem 14 are open.

Furthermore, from numerical examples, we conjecture that condition 3 actually holds for all

learning primitives. Therefore, we believe that global stability of confounded learning is a

robust phenomenon which arises under sufficiently many learning environments.

To summarize, we have the following theorem:

6λ = λBH+λBL

1+λAH ≈ λBH if λAH

λBH + λBL

λBH is sufficiently small.
7We don’t need to worry about λAH since λAH

λBH always decreases conditional on observing action b.
Therefore, as long as λAH is negligible to λBH in the beginning of phase II, it must stay negligible.
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Figure 3: Belief movements in phase 2

Theorem 14 If prior Λ0 ∈ PB, then for any current belief Λt ∈ R3
++ and ε > 0. If

1. F(x)φ(b|AH,x)
φ(b|BL,x)

< F(y), where F(x) = φ(b|BL,x)−φ(b|BH,x)
φ(b|BH,x)−φ(b|AH,x)

on x ∈ [xBH , 1]

and y = xφ(b|BH,x)
(1−x)φ(b|AL,x)+xφ(b|BH,x)

;

2. log φ(a|AH,1)−log φ(a|BL,1)
log φ(b|BL,1)−log φ(b|AH,1)

> log φ(a|AH,1)−log φ(a|AL,1)
log φ(b|AL,1)−log φ(b|AH,1)

;

3. log φ(a|AL,1)−log φ(a|BL,1)
log φ(b|BL,1)−log φ(b|AL,x)

> log φ(a|BH,1)−log φ(a|AL,1)
log φ(b|AL,1)−log φ(b|BH,1)

;

4. λBH
φ(b|BH, λBH

λBH+1
)

φ(b|AL, λBH

λBH+1
)

strictly increases in λBH .

then there exists a finite sequence of actions hCt0, such that

‖Λt+t0(h
C
t0
|Λt)− Λ∗‖ < ε.

In other words, starting from Λt, after seeing hCt0, the society’s posterior belief enters the

ε−neighborhood of confounded learning.

Furthermore, by local stability of confounded learning Λ∗, ∃ ε0 > 0, such that

‖Λt+t0(h
C
t0
|Λt)− Λ∗‖ < ε0 ⇒ lim

k→+∞
Λt+t0+k = Λ∗ with positive probability.

So Λ∗ is globally stable under above conditions.

Proof. See Appendix D.

24



7 Conclusion

We study the effect of naive players on long run learning in an observational learning model.

Because naive players act exclusively on their own signals, their actions keep generating

new information. We argue that if the proportion of naive players is unknown and rational

players need to simultaneously learn the true proportion and the payoff-relevant state, then

confounded learning could arise. We further show that complete learning is globally stable:

for a large set of priors, starting from any current belief, society’s belief settles down to

complete learning with positive probability. We also give sufficient conditions that guarantee

confounded learning to be globally stable.

A Proof of Lemma 4

We first compute the evolution rule of λω1ω2
t . Conditional on seeing action α ∈ {a, b}, we

have

λω1ω2
t+1 (ht, α)=̇

Pt(ω1ω2|ht, α)

Pt(AL|ht, α)
=

Pt−1(ω1ω2|ht)
Pt−1(AL|ht)

φ(α|ω1ω2,Λt(ht))

φ(α|AL,Λt(ht))
= λω1ω2

t (ht)
φ(α|ω1ω2,Λt(ht))

φ(α|AL,Λt(ht))
;(15)

Using evolution rule 15, we have

E[λω1ω2
t+1 |AL, ht]

= λω1ω2
t+1 (ht, a)φ(a|AL,Λt(ht)) + λω1ω2

t+1 (ht, b)φ(b|AL,Λt(ht))

= [λω1ω2
t (ht)

φ(a|ω1ω2,Λt(ht))

φ(a|AL,Λt(ht))
]φ(a|AL,Λt(ht)) + [λω1ω2

t (ht)
φ(b|ω1ω2,Λt(ht))

φ(b|AL,Λt(ht))
]φ(b|AL,Λt(ht))

= λω1ω2
t (ht). (16)

It is obvious that λω1ω2
t is non-negative since it is a likelihood ratio. This completes the

proof.

B Rigorous Statements and Proofs of Section 5.1

In this section, we rigorously solve the simplified SS model in 5.1.

We first solve the unique sequential equilibrium.

Lemma 15 Assume equilibrium strategies σ1, . . . , σt−1 have been constructed. The induced

probability distribution on {A,B} × {a, b}t−1 is denoted as Pt−1. For history ht ∈ {a, b}t−1,
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denote

λt(ht) =
Pt−1(B|ht)
Pt−1(A|ht)

.

Then the equilibrium strategy of player t is given by following cutoff rules:

σt = a⇔

st ≥ λt
λt+u

, if player t is Match type;

st ≤ λt
λt+v

, if player t is Mis-match type.

The proof of the above lemma is essentially the same as that of lemma 2.

The following result describes the belief updating rule along the equilibrium path.

Lemma 16 Along the equilibrium path, we have

λt+1(ht, α) = ϕ(λt(ht), α) = λt(ht)
φ(α|λt, B)

φ(α|λt, A)
,∀α ∈ {a, b};

where

φ(a|λ, ω) = p[1− F ω(
λ

λ+ u
)] + (1− p)F ω(

λ

λ+ v
),

and

φ(b|λ, ω) = pF ω(
λ

λ+ u
) + (1− p)[1− F ω(

λ

λ+ v
)].

The following proposition is a restatement of Theorem 2(g) in Smith and Sørensen (2000).

It describes a sufficient condition for confounded learning to arise.

Proposition 17 If lims→1− f
A(s) and lims→0+ f

B(s) are both finite positive numbers, then

min{ p

1− p
,
1− p
p
} <

v

u
< max{ p

1− p
,
1− p
p
} implies that there exists a non-empty set

K ( (0,+∞) such that ∀λ∗ ∈ K, we have

φ(α|λ∗, B) = φ(α|λ∗, A), ∀α ∈ {a, b}.

Proof. Let E(λ) = φ(a|λ,B)− φ(a|λ,A) for all λ ∈ (0,+∞). We have

E′(λ) = p[fA(
λ

λ+ u
)− fB(

λ

λ+ u
)]

u

(λ+ u)2
+ (1− p)[fB(

λ

λ+ v
)− fA(

λ

λ+ v
)]

v

(λ+ v)2
.
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By definition fB(x)
fA(x)

= 1−x
x
,∀x ∈ (0, 1), so we have

lim
λ→0+

E′(λ)

= lim
λ→0+

[pfB(
λ

λ+ u
)(
λ

u
− 1)

u

(λ+ u)2
+ (1− p)fB(

λ

λ+ v
)(1− λ

v
)

v

(λ+ v)2
]

= (
1− p
v
− p

u
) lim
s→0+

fB(s). (17)

and

lim
λ→+∞

λ2E′(λ)

= lim
λ→+∞

λ2[pfA(
λ

λ+ u
)(1− u

λ
)

u

(λ+ u)2
+ (1− p)fA(

λ

λ+ v
)(
v

λ
− 1)

v

(λ+ v)2
]

= [up− v(1− p)] lim
s→1−

fA(s). (18)

By assumption lims→0+ f
B(s) > 0 and lims→1− f

A(s) > 0, so

1− p
p

>
v

u
>

p

1− p

⇔ 1− p
v
− p

u
> 0 and up− v(1− p) < 0

⇔ lim
λ→0+

E′(λ) > 0 and lim
λ→+∞

λ2E′(λ) < 0. (19)

Since limλ→0+ E(λ) = limλ→+∞ E(λ) = 0, condition 19 is equivalent to that there exists open

intervals (0, ε) and (m,+∞) such that

E(λ) > 0,∀λ ∈ (0, ε) and E(λ) < 0, ∀λ ∈ (m,+∞).

Therefore, condition 19 implies that ∃λ∗ ∈ [ε,m] such that E(λ∗) = 0. Similarly, we have

1− p
p

<
v

u
<

p

1− p
⇔ lim

λ→0+
E′(λ) < 0 and lim

λ→+∞
λ2E′(λ) > 0, (20)

which implies ∃λ∗(0,+∞) such that E(λ∗) = 0.

The following theorem rigorously describes the conditions under which complete learning

never arise.

Theorem 18 If λ0 > inf{K}, and belief updating rule ϕ(λ, α) monotonically increases for
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α ∈ {a, b}, then ∀h ∈ {a, b}N, we have

lim
t→+∞

λt(h) 6= 0.

Proof. That λ0 > inf{K} implies that ∃λ∗ ∈ K such that λ0 > λ∗. By the definition of

confounded learning point λ∗, ϕ(λ∗, α) = λ∗ for α ∈ {a, b}. Since ϕ(λ, α) monotonically

increases for α ∈ {a, b}, we have

ϕ(λt, α) ≥ ϕ(λ∗, α) = λ∗,∀α ∈ {a, b},

provided that λt ≥ λ∗. Given λ0 > λ∗, inductively we have λt ≥ λ∗, ∀t.

C Proof of Theorem 13

For reader’s convenience, we first rewrite Theorem C.2 of Smith and Sørensen (2000) in our

notations.

Theorem 19 Let 〈(αt,Λt)〉 be a discrete-time Markov Process on {a, b} × R3, with transi-

tions

Λt+1 = ϕ(αt,Λt),with prob φ(αt|AL,Λt).

Let Λ∗ be a fixed point of ϕ(α, ·). If

1. φ(α|AL,Λ∗) is continuous at Λ∗, and ϕ(α, ·) is C1 at Λ∗;

2. Dαϕ(α,Λ∗) has distinct, real, positive, non-unit eigenvalue;

3. φ(a|AL,Λ∗)Daϕ(a,Λ∗) + φ(b|AL,Λ∗)Dbϕ(b,Λ∗) = I.

Then, Λ∗ is locally stable.

It is straightforward to verify that φ(α|AL,Λ∗) is continuous and that ϕ(α, ·) is C1 at Λ∗.

We further compute

Daϕ(a,Λ∗) =


φ(a|AH,Λ∗)
φ(a|AL,Λ∗) 0 0

0 φ(a|BL,Λ∗)
φ(a|AL,Λ∗) 0

−( πBH
πBH+1

)2G1
πBH

(πBH+1)2
G1 1 + πBH

(πBH+1)2
G1


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Dbϕ(b,Λ∗) =


φ(b|AH,Λ∗)
φ(b|AL,Λ∗) 0 0

0 φ(b|BL,Λ∗)
φ(b|AL,Λ∗) 0

−( πBH
πBH+1

)2G2
πBH

(πBH+1)2
G2 1 + πBH

(πBH+1)2
G2


where

G1 =
(1− pL)fA( πBH

πBH+1
)− (1− pH)fB( πBH

πBH+1
)

φ(a|AL,Λ∗)
,

and

G2 =
−(1− pL)fA( πBH

πBH+1
) + (1− pH)fB( πBH

πBH+1
)

φ(b|AL,Λ∗)
.

Then it is straightforward to verify that φ(a|AL,Λ∗)Daϕ(a,Λ∗)+φ(b|AL,Λ∗)Dbϕ(b,Λ∗) = I

holds. Furthermore, let

Q =


1 0 0

0 1 0(
πBH
πBH+1

)2
G1

1+
πBH

(πBH+1)2
G1−

φ(a|AH,πBH )

φ(a|AL,πBH )

− πBH
(πBH+1)2

G1

1+
πBH

(πBH+1)2
G1−

φ(a|BL,πBH )

φ(a|AL,πBH )

1


Then we can verify that Q−1Dαϕ(α, ·)Q = Mα, where

Ma =


φ(a|AH,Λ∗)
φ(a|AL,Λ∗) 0 0

0 φ(a|BL,Λ∗)
φ(a|AL,Λ∗) 0

0 0 1 + πBH
(πBH+1)2

G1



Mb =


φ(b|AH,Λ∗)
φ(b|AL,Λ∗) 0 0

0 φ(b|BL,Λ∗)
φ(b|AL,Λ∗) 0

0 0 1 + πBH
(πBH+1)2

G2.


We observe that G1 > 0 and G2 < 0 since πBH > 1−pH

1−pL
as in proposition 8 and that fB(x)

fA(x)
=

1−x
x

. Then it is straightforward that Dαϕ(α,Λ∗), α ∈ {a, b} have real, distinct and non-unit

eigenvalues. Finally, with assumption that ∂ϕ3(at,Λ∗)
λBH

> 0, we have 1 + πBH
(πBH+1)2

G2 > 0. So all

the eigenvalues are positive as well.
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D Omitted Proofs in Global Stability

In this section, we first explicitly construct a action sequence hC1 . In lemmas 20 and 28,

we prove that society’s posterior belief can be arbitrarily close to axis λBH conditional

on seeing sufficiently many actions in hC1 . In lemmas 31 and 32, we prove that society’s

belief, starting from a position sufficiently close to axis λBH and is bounded above by a

finite number λ
BH

< s
1−s

8 , can eventually enter any pre-determined ε−neighborhood of

confounded learning after observing a long sequence of action b. In proposition 35, we show

that we can always push society’s belief into a position sufficiently close to axis−λBH and is

bounded above by a proper λ
BH

. A lot of computation results are used in the proofs. To not

to disrupt the logic of proofs, we verify these computation results in the end of this section,

from claim 36 to claim 41.

We arbitrarily choose and fix a current belief Λ ∈ R3
++ and a ε > 0 in this section. We

use Λ(h|Λ1) to represent the posterior belief updated from Λ1 after seeing history h.

At period t, action hC1
t is chosen to reduce the ratio

λAHt
λBHt

+
λBLt
λBHt

. We observe that

(
λAHt
λBHt

(
φ(a|AH,Λt)

φ(a|BH,Λt)
− 1

)
,
λBLt
λBHt

(
φ(a|BL,Λt)

φ(a|BH,Λt)
− 1

))

= −φ(b|BH,Λt)

φ(a|BH,Λt)

(
λAHt
λBHt

(
φ(b|AH,Λt)

φ(b|BH,Λt)
− 1

)
,
λBLt
λBHt

(
φ(b|BL,Λt)

φ(b|BH,Λt)
− 1

))
. (21)

Therefore, if we consider the pair
(λAHt
λBHt

,
λBLt
λBHt

)
, after seeing an action, it can only moves toward

two opposite directions. Therefore, generically we can choose an action to reduce
λAHt
λBHt

+
λBLt
λBHt

.

Following this observation, hC1 is constructed in following way: at period t, if there

exists an action α ∈ {a, b} such that
λAHt+1(α)

λBHt+1(α)
+

λBLt+1(α)

λBHt+1(α)
<

λAHt
λBHt

+
λBLt
λBHt

, then hC1
t = α; otherwise,

choose action a. From the construction,
λAHt (h

C1
t |Λ)

λBHt (h
C1
t |Λ)

+
λBLt (h

C1
t |Λ)

λBHt (h
C1
t |Λ)

obviously form a decreasing

sequence bounded from below by 0. The following lemma shows that it must converge to 0

with condition 22.

Lemma 20 Let xBH =
π∗BH
π∗BH+1

. For all x ∈ [xBH , 1], let F(x) = φ(b|BL,x)−φ(b|BH,x)
φ(b|BH,x)−φ(b|AH,x)

, if

F(x)
φ(b|AH, x)

φ(b|BL, x)
< F(y), where y =

xφ(b|BH, x)

(1− x)φ(b|AL, x) + xφ(b|BH, x)
(22)

8In this section, most of the times, we don’t explicitly distinguish bounded private signal and unbounded
private signal. If private signal is unbounded, we understand that 1−s

s ≡= +∞
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then there exists an infinite sequence hC1 such that

lim
t→+∞

λAHt (hC1
t |Λ)

λBHt (hC1
t |Λ)

+
λBLt (hC1

t |Λ)

λBHt (hC1
t |Λ)

= 0,

where Λ is the arbitrarily chosen current belief at the beginning of this section.

For notation convenience, from now on in the proof of lemma 20, we drop hC1 with the

understanding that Λt is actually Λ(hC1
t |Λ). For example, when we write λAHt , we mean a

number λAHt (hC1
t |Λ), rather than a random variable.

Proof of lemma 20. Since
λAHt
λBHt

+
λBLt
λBHt

form a decreasing sequence bounded from below,

it converges for sure. Let’s assume it converges to a positive constant c. Following sequence

of claims lead to a contradiction.

Recall that xt =
λBHt +λBLt

1+λAHt +λBLt +λBHt
, following two claims 21 and 22 says that eventually xt

must stay strictly above x0.

Claim 21 @ infinite sub-sequence tk such that xtk → x0.

Proof. Assume the opposite. By the construction, we have
λAHt
λBHt

+
λBLt
λBHt

monotonically

decreases and is bounded from below, so

lim
tk→+∞

[λAHtk+1

λBHtk+1

+
λBLtk+1

λBHtk+1

]
−
[λAHtk
λBHtk

+
λBLtk
λBHtk

]
= lim

tk→+∞

[λAHtk
λBHtk

φ(αtk |AH, xtk)− φ(αtk |BH, xtk)
φ(αtk |BH, xtk)

+
λBLtk
λBHtk

φ(αtk |BL, xtk)− φ(αtk |BH, xtk)
φ(αtk |BH, xtk)

]
= 0.

Fact 38 (verified in the end of this section) says that
φ(αtk |AH,xtk )−φ(αtk |BH,xtk )

φ(αtk |BH,xtk )
is strictly

bounded away from 0. The assumption that xtk → x0 implies that
φ(αtk |BL,xtk )−φ(αtk |BH,xtk )

φ(αtk |BH,xtk )
→

0. Therefore, we must have
λAHtk
λBHtk
→ 0. Furthermore, since we assume limt→+∞

λAHt
λBHt

+
λBLt
λBHt

= c,

we must also have
λBLtk
λBHtk
→ c.

To summarize, with assumption that

λAHt
λBHt

+
λBLt
λBHt

→ c; and ∃tk s.t. xtk → x0; (23)
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we must have

λAHtk
λBHtk

→ 0;
λBLtk
λBHtk

→ c;xtk → x0 (24)

This implies the limit position of Λtk must be

λAHtk → 0;λBLtk →
cx0

(1 + c)(1− x0)
;λBHtk →

x0

(1 + c)(1− x0)
. (25)

Now we prove that Λtk cannot converge to above limit. For a sufficiently large tk, let us

consider the action hC1
tk

at period tk. If hC1
tk

= a, then xtk+1 must be sufficiently close to
x0[1−FB(x0)]

x0[1−FB(x0)]+(1−x0)[1−FA(x0)]
≡ xatk+1 < x0. Then hC1

tk+1
must be b since φ(b|BL,x)

φ(b|BH,x)
< 1 when

x < x0. However, we must have
[λAHtk+2

λBHtk+2
+

λBLtk+2

λBHtk+2

]
−
[λAHtk+1

λBHtk+1
+

λBLtk+1

λBHtk+1

]
be sufficiently close to

c φ(a|BL,x0)
φ(a|BH,x0)

φ(b|BL,xatk+1)−φ(b|BH,xatk+1)

φ(b|BH,xatk+1)
which is strictly bounded below from 0. This contradicts

that
λAHt
λBHt

+
λBLt
λBHt

must converge.

Similarly, if hC1
tk

= b, then xtk+1 must be sufficiently close to x0FB(x0)
x0FB(x0)+(1−x0)FA(x0)

≡

xbtk+1 > x0. Then hC1
tk+1

must be a since φ(a|BL,x)
φ(a|BH,x)

< 1 when x > x0. We also have
[λAHtk+2

λBHtk+2
+

λBLtk+2

λBHtk+2

]
−
[λAHtk+1

λBHtk+1
+

λBLtk+1

λBHtk+1

]
must be sufficiently close to c φ(b|BL,x0)

φ(b|BH,x0)

φ(a|BL,xbtk+1)−φ(a|BH,xbtk+1)

φ(a|BH,xbtk+1)

which is also strictly bounded below 0.

Claim 22 @ infinite sub-sequence tk such that xtk < x0.

Proof. Assume the opposite.

It is direct to verify that φ(b|AH,x)
φ(b|BH,x)

< 1 and φ(b|BL,x)
φ(b|BH,x)

< 1 if x < x0. So

0 = lim
tk→+∞

[λAHtk+1

λBHtk+1

+
λBLtk+1

λBHtk+1

]
−
[λAHtk
λBHtk

+
λBLtk
λBHtk

]
= lim

tk→+∞

[λAHtk
λBHtk

φ(b|AH, xtk)− φ(b|BH, xtk)
φ(b|BH, xtk)

+
λBLtk
λBHtk

φ(b|BL, xtk)− φ(b|BH, xtk)
φ(b|BH, xtk)

]
≤ lim

tk→+∞

[λAHtk
λBHtk

φ(b|AH, xtk)− φ(b|BH, xtk)
φ(b|BH, xtk)

]
≤ 0.

Use fact 38, we have again
λAHtk
λBHtk

→ 0;
λBLtk
λBHtk

→ c.
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Then

lim
tk→+∞

[λAHtk
λBHtk

φ(b|AH, xtk)− φ(b|BH, xtk)
φ(b|BH, xtk)

+
λBLtk
λBHtk

φ(b|BL, xtk)− φ(b|BH, xtk)
φ(b|BH, xtk)

]
= lim

tk→+∞

[ λBLtk
λBHtk

φ(b|BL, xtk)− φ(b|BH, xtk)
φ(b|BH, xtk)

]
= 0

implies that xtk → x0. Then we can just cite Claim 21.

There is a one-to-one map between Λt and Pt = (pAHt , pBLt , pBHt ), which is the society’s

posterior belief represented by probabilities rather than ratios. We can verify that
λAHt
λBHt

+
λBLt
λBHt

=
pAHt
pBHt

+
pBLt
pBHt

, ∀Λt ∈ R3
++.

The following claims describes the limit of Pt under the assumption that
λAHt
λBHt

+
λBLt
λBHt
→ c.

The limit of Pt must converges to a set Pcluster. Starting from each limit point Ps, there

exists one action α. Upon seeing this action α, society’s belief update from Ps to another

limit belief in Pcluster.

Claim 23 ∃Pcluster = {Ps}s∈I satisfying

1. Each Ps ∈ Pcluster is a cluster point. In other words, ∃ sub-sequence tsk such that

limtsk→∞ Ptsk = Ps.

2. For each Ps = (pAHs , pBLs , pBHs ), we have pAHs
pBHs

+ pBLs
pBHs

= c, and xs > x0.

3. For each Ps, ∃ at least one action α ∈ {a, b} such that Ps(α) ∈ Pcluster.

Proof. The existence of cluster set Pcluster following from the fact that an infinite se-

quence in a compact space must have convergent sub-sequence. The sequence of probabilities

(pAHt , pBLt , pBHt ) lives in a compact simplex

∆ = {(pAH , pBL, pBH)|0 ≤ pAH , pBL, pBH ≤ 1; 0 ≤ pAH + pBL + pBH ≤ 1}.

The existence of a set of cluster points follows directly.

By the fact that ps is a cluster point and the assumption that
pAHt
pBHt

+
pBLt
pBHt
→ c, we have

pAHs
pBHs

+ pBLs
pBHs

= c. This ratio is always well-defined for the reason that pBHs can’t be 0. From

the fact that
pAHt
pBHt

+
pBLt
pBHt

forms a non-increasing sequence, if pBHs = 0, then pAHs = pBLs = 0.

Furthermore, because of claim 22, Ps = (0, 0, 0) is impossible. That xs > x0 follows directly

from claims 21 and 22.
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For a cluster point Ps and corresponding sub-sequence Ptsk , divide the sub-sequence fur-

ther into two sub-sequences Pts,ak and Pts,bk
. Here at a particular belief Ptsk if by the construc-

tion, action αtsk = a, then it is classified into Pts,ak . Here at least one sub-sequence of Pts,ak
and Pts,bk

must be infinite. Without loss of generality, assume that Pts,ak is infinite. Then

Pts,ak +1 → Ps(a).

By definition, Ps(a) is a cluster point.

Following two claims says that, under condition 22, at a limit belief Ps, upon observing

an action b, society’s belief must no longer lives in the limit set Pcluster. In other words,

under condition 22, from some period on, hC1
t must solely consists of actions a.

Claim 24 For each Ps ∈ Pcluster, we have

pAHs
pBLs

=
φ(b|BL, xs)− φ(b|BH, xs)
φ(b|BH, xs)− φ(b|AH, xs)

(26)

Proof. By the fact that ∃α ∈ {a, b} such that Ps(α) ∈ Pcluster, we have

pAHs
pBHs

+
pBLs
pBHs

=
pAHs
pBHs

φ(α|AH, xs)
φ(α|BH, xs)

+
pBLs
pBHs

φ(α|BL, xs)
φ(α|BH, xs)

,

which is equivalent to

pAHs [φ(α|BH, xs)− φ(α|AH, xs)] = pBLs [φ(α|BL, xs)− φ(α|BH, xs)]. (27)

Following claim 21 and claim 22, xs > x0. We can verify that φ(α|BH, xs)−φ(α|AH, xs) 6=
0 and that φ(α|BL, xs) − φ(α|BH, xs) 6= 0. Lastly, that pBLs = 0 implies pAHs = 0, so
pAHs
pBHs

+ pBLs
pBHs

= c cannot hold. Therefore, we can rewrite equation 27 to obtain 26.

Claim 25 If condition in lemma 20 is satisfied, then for all Ps ∈ Pcluster, Ps(b) /∈ Pcluster

Proof. Assume the opposite that Ps(b) ∈ Pcluster. Use the descripition 26, we have

F(xs)
φ(b|AH, xs)
φ(b|BL, xs)

=
λAHs
λBLs

φ(b|AH, xs)
φ(b|BL, xs)

=
φ(b|BL, xs(b))− φ(b|BH, xs(b))
φ(b|BH, xs(b))− φ(b|AH, xs(b))

= F(xs(b)). (28)

If xs ∈ (x0, xBH), following the same reasoning as in formula 13, we have xs(b) > xs.

By fact 39, φ(b|AH,xs)
φ(b|BL,xs) < 1 if xs ∈ (x0, xBH). Therefore, if xs ∈ (x0, xBH), we must have
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F(xs(b)) > F(xs) > F(xs)
φ(b|AH,xs)
φ(b|BL,xs) , which contradicts equation 28. So, if xs ∈ (x0, xBH),

then Ps(b) /∈ Pcluster.
If xs ∈ [xBH , 1], then by claim 36 and claim 37, we must have F(xs(b)) ≥ F(y(xs)) where

y(xs) = xsφ(b|BH,xs)
(1−xs)φ(b|AL,xs)+xsφ(b|BH,xs) . Then equation 28 contradicts the sufficient condition in

lemma 20.

The following claim brings the contradiction: if hC1
t consists of all action a from some

period on, then no element in Pcluster can actually be a limit point.

Claim 26 If for all Ps ∈ Pcluster, Ps(b) /∈ Pcluster. Then no Ps can be a limit point.

Proof. For a cluster point Ps and a Ptsk which is sufficiently close to Ps, by claim 25, αtsk
must be a.

If pAHs
pBHs

> 0, then

pAHtsk+1

pBHtsk+1

=
pAHtsk
pBHtsk

φ(a|AH, xtsk)
φ(a|BH, xtsk)

>
pAHs
pBHs

.

Similarly, Ptsk+1 is sufficiently close to a different cluster point Ps(a), αtsk+1 must be a as

well. So
pAH
ts
k
+2

pBH
ts
k
+2

must be even bigger.

Following this logic, Pt can never return within a neighborhood of Ps. This contradicts

that Ps is a cluster point.

If pAHs
pBHs

= 0, then pBLs
pBHs

= c > 0. By claims 21 and 22, xs must be strictly bigger than x0.

It is direct to verify that φ(a|BL,xs)
φ(a|BH,xs) < 1.Therefore,

pBLtsk+1

pBHtsk+1

=
pBLtsk
pBHtsk

φ(a|BL, xtsk)
φ(a|BH, xtsk)

<
pBLs
pBHs

.

So
pBLt
pBHt

can never return to c. This implies that Pt can never return within a neighborhood

of Ps again.

Merely
λAHt
λBHt

+
λBLt
λBHt
→ 0 doesn’t guarantee that Λt is eventually close to the axis λBH .

The ratio could decrease to 0 just because that λBHt increases much faster than λAHt and

λBLt . We need to rule out this possibility.

Lemma 27 If

(1) λBHt (hC1
t |Λ)→ +∞;

or

(2) private signal is bounded (s < 1), λBHt (hC1
t |Λ) doesn’t approach +∞, but ∃t such that
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λBHt (hC1
t |Λ) ≥ s

1−s for all t ≥ t.

Then ∃ sequence Tk ∈ N, such that

lim
Tk→+∞

#a

(Tk)2
= fa ≡

log φ(b|BL,1)
φ(b|AH,1)

log φ(a|AH,1)
φ(a|BL,1)

+ log φ(b|BL,1)
φ(b|AH,1)

;

lim
Tk→+∞

#b

(Tk)2
= fb ≡

log φ(a|AH,1)
φ(a|BL,1)

log φ(a|AH,1)
φ(a|BL,1)

+ log φ(b|BL,1)
φ(b|AH,1)

. (29)

Here #α counts the number of actions α ∈ {a, b} from period Tk to period Tk + (Tk)
2.

Proof. If (1) holds, then xt(h
C1
t |Λ)→ 1. If (2) holds, then xt ≥

1+
λBLt
λBHt

1+
λBLt
λBHt

+
λAHt
λBHt

+ 1−s
s

for all t ≥ t.

Thus, lim inft→+∞ xt ≥ s. In both cases, ∀k ∈ N, there exists T 1
k such that xt ∈ (s− 1

k
, 1] for

all t ≥ T 1
k − 1.

We can verify that in phase I,

hC1
t = b⇔ λAHt

λBLt
> F(xt). (30)

Here F(·) is the same function as defined in lemma 20.

We have following claim: ∀k ∈ N, ∃Tk ≥ T 1
k such that

λAHt
λBLt

∈ [F(s− 1

k
)
φ(b|BH, sb∗k)
φ(b|AL, sb∗k)

,F(1)
φ(a|BH, s∗ak )

φ(a|AL, s∗ak )
] (31)

where sα∗k = argminx∈(s− 1
k
,1]

φ(α|BH,x)
φ(α|AL,x)

, and s∗αk = argmaxx∈(s− 1
k
,1]

φ(α|BH,x)
φ(α|AL,x)

. For notation

convenience, from now to the end of this proor, we shall just write [lb, ub] for the closed

interval in 31.

In this paragraph we prove the above claim. Let t1 = min{t ≥ T 1
k |
λAHt
λBLt

> F(xt)}. Then

t1 < +∞. Otherwise,
λAHt
λBHt
≤ F(xt) for all t ≥ T 1

k . By construction rule 30, we must have

hC1
t = a for all t ≥ T 1

k . Then

log
λAHt
λBLt

− log
λAH
T 1
k

λBLTk+1

=
t−1∑
i=Tk

log
φ(a|BH, xi)
φ(a|AL, xi)

.

By claim 39, log φ(a|BH,xi)
φ(a|AL,xi) is bounded above 0. Therefore,

λAHt
λBLt
→ +∞ as t→ +∞. However,

this contradicts
λAHt
λBLt
≤ F(xt) for all t ≥ T 1

k since F(xt) ≤ F(1) < +∞. (Recall F(·) strictly
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increases). Then we must have

λAHt1
λBLt1

=
λAHt1−1

λBLt1−1

φ(a|AH, xt1−1)

φ(a|AL, xt1−1)

≤ F(xt1−1)
φ(a|AH, xt1−1)

φ(a|AL, xt1−1)

≤ F(1)
φ(a|AH, s∗ak )

φ(a|AL, s∗ak )
(32)

Here the first equation and the first inequality follow from the definition of t1. The second

inequality follows from that xt1−1 ∈ (s− 1
k
, 1] and that F(·) strictly increases. Furthermore,

we have

λAHt1
λBLt1

>
λAHt1
λBLt1

φ(b|AH, xt1)
φ(b|BL, xt1)

≥ F(s− 1

k
)
φ(b|AH, xt1)
φ(b|BL, xt1)

≥ F(s− 1

k
)
φ(b|AH, sb∗k)
φ(b|BL, sb∗k)

. (33)

Here the first inequality follows from that
φ(b|AH,xt1 )

φ(b|BL,xt1 )
< 1 (see claim 39). The second inequality

follows the definition of t1 and that F strictly increases. The third inequality follows from the

definition of sb∗k. Combine inequalities 32 and 33, we have
λAHt1
λBLt1
∈ [lb, ub]. Let Tk = t1. We

have the following inductive argument: for all t ≥ Tk, if
λAHt
λBLt
∈ [lb, ub], then

λAHt+1

λBLt+1
∈ [lb, ub].

The inductive argument can be proved as following: there are two cases:

1.
λAHt
λBLt
≤ xt, then

λAHt+1

λBLt+1
=

λAHt
λBLt

φ(a|BH,xt)
φ(a|AL,xt) ≤ F(1)

φ(a|BH,s∗ak )

φ(a|AL,s∗ak )
.

2.
λAHt
λBLt

> xt, then
λAHt+1

λBLt+1
=

λAHt
λBLt

φ(b|BH,xt)
φ(b|AL,xt) > F(s− 1

k
)
φ(b|BH,sb∗k)

φ(b|AL,sa∗k)
.

So claim 31 is proved.

Furthermore, we have

λAHTk+(Tk)2

λBLTk+(Tk)2
=
λAHTk
λBLTk

Π
Tk+(Tk)2−1
i=Tk

φ(αi|BH, xi)
φ(αi|AL, xi)

∈ [lb, ub]; (34)

so

Π
Tk+(Tk)2−1
i=Tk

φ(αi|BH, xi)
φ(αi|AL, xi)

∈ [
lb

ub
,
ub

lb
]. (35)
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We can make left-hand side of 35 slightly bigger and obtain((φ(a|BH, s∗ak )

φ(a|AL, s∗ak )

) #a

(Tk)
2
(φ(b|BH, s∗bk )

φ(b|AL, s∗bk )

) #b

(Tk)
2

)(Tk)2

≥ lb

ub
, (36)

We can make left-hand side of 35 slightly smaller and obtain((φ(a|BH, sa∗k)
φ(a|AL, sa∗k)

) #a

(Tk)
2
(φ(b|BH, sb∗k)
φ(b|AL, sb∗k)

) #b

(Tk)
2

)(Tk)2

≤ ub

lb
. (37)

Now taking logarithm on both sides of 36 and 37, and let k → +∞, Tk → +∞, we have

lim sup
Tk→+∞

#a

(Tk)2
log

φ(a|AH, 1)

φ(a|BL, 1)
+
(
1− lim sup

Tk→+∞

#a

(T 2
k )

)
log

φ(b|AH, 1)

φ(b|BL, 1)
) ≤ 0; (38)

and

lim inf
Tk→+∞

#a

(Tk)2
log

φ(a|AH, 1)

φ(a|BL, 1)
+
(
1− lim inf

Tk→+∞

#a

(T 2
k )

)
log

φ(b|AH, 1)

φ(b|BL, 1)
) ≥ 0. (39)

Combine above two inequalities, we have

log φ(b|BL,1)
φ(b|AH,1)

log φ(a|AH,1)
φ(a|BL,1)

+ log φ(b|BL,1)
φ(b|AH,1)

≥ lim inf
Tk→+∞

#a

(Tk)2
≥ lim sup

Tk→+∞

#a

(Tk)2
≥

log φ(b|BL,1)
φ(b|AH,1)

log φ(a|AH,1)
φ(a|BL,1)

+ log φ(b|BL,1)
φ(b|AH,1)

.

So limTk→+∞
#a

(Tk)2
exists and equals to fa ≡

log
φ(b|BL,1)
φ(b|AH,1)

log
φ(a|AH,1)
φ(a|BL,1) +log

φ(b|BL,1)
φ(b|AH,1)

.

Now we use above lemma to prove that we can always push society’s belief sufficiently

close to axis−λBH in phase I.

Lemma 28 In addition of sufficient condition 22, if

log φ(a|AH, 1)− log φ(a|BL, 1)

log φ(b|BL, 1)− log φ(b|AH, 1)
>

log φ(a|AH, 1)− log φ(a|AL, 1)

log φ(b|AL, 1)− log φ(b|AH, 1)
, (40)

then there exists a sub-sequence tk such that

λAHtk → 0; λBLtk → 0.

Proof. Assume the opposite. Then ∃ ε0 such that ‖(λAHt , λBLt )‖ > ε0 for sufficiently large t.

Since we assumed sufficient condition 22, lemma 20 implies that
λAHt
λBHt

+
λBLt
λBHt
→ 0. Therefore
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we must have λBHt → +∞. This is equivalent to xt → 1. This satisfies condition (1) in

lemma 27.

Let tk = Tk + (Tk)
2 where Tk as constructed in lemma 27. Then

λAHTk+(Tk)2 = λAHTk
[
Παt=a

φ(a|AH, xt)
φ(a|BL, xt)

][
Παt=b

φ(b|AH, xt)
φ(b|BL, xt)

]
≤ cTk

[
Παt=a

φ(a|AH, xt)
φ(a|BL, xt)

][
Παt=b

φ(b|AH, xt)
φ(b|BL, xt)

]
≤ cTk

[(φ(a|AH, 1)

φ(a|BL, 1)

) #a

(Tk)
2
(φ(b|AH, 1− 1

k
)

φ(b|BL, 1− 1
k
)

) #b

(Tk)
2

](Tk)2

. (41)

Here c ≡ maxx∈[0,1]{φ(a|AH,x)
φ(a|BL,x)

, φ(b|AH,x)
φ(b|BL,x)

} is the largest possible increase of λAH . Here the last

inequality follows from (1) xt ∈ (1− 1
k
, 1] for t ∈ [Tk, Tk+(Tk)

2], (2) for big enough k, φ(b|AH,x)
φ(b|BL,x)

monotonically decreases on (1 − 1
k
, 1) and (3) for big enough k, φ(a|AH,x)

φ(a|BL,x)
monotonically

increases on (1 − 1
k
, 1). Condition 28 is equivalent to that

[φ(a|AH,1)
φ(a|BL,1)

]fa[φ(b|AH,1)
φ(b|BL,1)

]fb < 1. So

for sufficiently large Tk, the big term with the bracket in 41 is strictly below 1 and converges

to
[φ(a|AH,1)
φ(a|BL,1)

]fa[φ(b|AH,1)
φ(b|BL,1)

]fb . We have

lim
Tk→∞

λAHTk+(Tk)2 ≤ lim
Tk→∞

cTk
{[φ(a|AH, 1)

φ(a|BL, 1)

]fa[φ(b|AH, 1)

φ(b|BL, 1)

]fb}(Tk)2
. (42)

So limTk→∞ λ
AH
Tk+(Tk)2 = 0. We can similarly prove limTk→∞ λ

BL
Tk+(Tk)2 = 0. In fact, if xt → 1,

then

lim
Tk→∞

λBLTk+(Tk)2 = lim
Tk→∞

λAHTk+(Tk)2 .

Recall that in phase II we use a long sequence of action b to push society’s belief from a po-

sition close to axis-λBH to a ε−neighborhood of the confounded learning. As long as in phase

II, λAH , λBL stays negligible, the belief dynamics is similar to the one-dimension belief dy-

namics where λAH , λBH are zero. In this sense, construction in phase I turns the problem from

three-dimension into (roughly) one-dimension. However, we should notice that the (roughly)

one-dimension dynamics in phase II is still different to a true one-dimension dynamics. We

need to guarantee that λAH , λBL stay negligible in entire phase II. To guarantee λBL stays

negligible, we must start phase II with super small λBL. However, if λBHt (hC1
T |Λ) → +∞,

then this super small λBL comes with a cost of a super large λBH , and hence a super long

sequence of actions b to reduce λBH close to π∗BH . Since observing action b always increases
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λBH . It is not clear that whether the super small initial λBL can outweigh the super long

sequence of actions b so that λBL stays negligible in phase II. We deal with this situation

separately in proposition 35. If in phase I, we can arbitrarily shrink λBL without getting a

super large λBH . Then it is easier to guarantee that λBL

λBH
stays small. After all, fix a learning

environment, a λBH bounded from above implies that the number of actions b needed in

phase II is also bounded from above. Hence the increase of λBL

λBH
in phase II is also bounded

from above. Therefore, we can always control the largest value of λBL

λBH
in phase II by choosing

a small enough initial value. In lemmas 31, 32 and proposition 34 we deal with this easier

case.

From the next proposition to proposition 35, we all holds the following assumption:

Assumption 29 λBH
φ(b|BH, λBH

λBH+1
)

φ(b|AL, λBH

λBH+1
)

strictly increases in λBH on λBH ∈ ( s
1−s ,

s
1−s).

This assumption says that the belief updating rule of λBH is strictly increasing if λAH =

λBL = 0. Then if λBH is above (below) π∗BH , after seeing an action b, λBH(b) cannot jump

to the other side of π∗BH , since π∗BH is a fixed point of the belief updating rule. The following

lemma generalize this into the case that λAH , λBL is negligible.

Lemma 30 For any closed interval [b, b] ( ( s
1−s , π

∗
BH), there exists ξ > 0 such that

Λ ∈ [0, ξ]2 × [b, b]⇒ λBH
φ(b|BH,Λ)

φ(b|AL,Λ)
≤ π∗BH . (43)

Similarly, for any closed interval [b, b] ( (π∗BH ,
s

1−s), there exists ξ > 0 such that

Λ ∈ [0, ξ]2 × [b, b]⇒ λBH
φ(b|BH,Λ)

φ(b|AL,Λ)
≥ π∗BH (44)

.

Proof. We only write out the details of the case that Λ ∈ [0, ξ]2 × [b, b]. We compute the
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Taylor expansion of φ(b|BH,Λ)
φ(b|AL,Λ)

at Λ = (0, 0, λBH) with Lagrange remainder as following:

φ(b|BH,Λ)

φ(b|AL,Λ)
− φ(b|BH,Λ)

φ(b|AL,Λ)

= (λAH , λBL, 0)


∂

∂λAH
φ(b|BH,Λ)
φ(b|AL,Λ)

|Λ
∂

∂λBL
φ(b|BH,Λ)
φ(b|AL,Λ)

|Λ
∂

∂λBH
φ(b|BH,Λ)
φ(b|AL,Λ)

|Λ

+ (λAH , λBL, 0)H|Λ̃

λ
AH

λBL

0



=
−λBHλAH + λBL

(1 + λBH)2

∂

∂x

φ(b|BH, x)

φ(b|AL, x)
|x + (λAH , λBL, 0)H|Λ̃

λ
AH

λBL

0

 .
Here Λ̃ = c(Λ−Λ) + Λ, 0 < c < 1 and x = λBH

1+λBH
. We can verify that Λ̃ ∈ [0, ξ]2 × [b, b] and

x ∈ [ b
b+1

, b
b+1

] ( (s, xBH).

With assumption that FA(s), FB(s) are twice continuously differentiable on (s, s) (see

assumption 1), we have that ∂
∂x

φ(b|BH,x)
φ(b|AL,x)

|x is continuous in x on [ b
1+b

, b
b+1

]. Furthermore, for

all Λ̃ = (cλAH , cλBL, λBH), we have that x̃ ≡ λBH+cλBL

1+cλAH+cλBL+λBH
≥ λBH

1+λBH+ξ
≥ b

b+1+ξ
, and that

x̃ ≤ λBH+ξ
1+λBH+ξ

≤ b+ξ

1+b+ξ
. By choosing ξ < min{1−s

s
d− 1, πBH − b}, we can guarantee that x̃ ∈

(s, xBH). ThusHij is continuous on Λ̃ ∈ [0, ξ]2×[b, b]. LetM = argmax
x∈[ b

b+1
, b
b+1

]
∂
∂x

φ(b|BH,x)
φ(b|AL,x)

|x
and N = argmaxΛ̃∈[0,ξ]2×[b,b] Hij, then

φ(b|BH,Λ)

φ(b|AL,Λ)
− φ(b|BH,Λ)

φ(b|AL,Λ)
≤ M

(1 + b)2
ξ + 4Nξ2.

Furthermore, if Λ ∈ [0, ξ]2 × [b, b], we have

λBH
φ(b|BH,Λ)

φ(b|AL,Λ)

≤ λBH
φ(b|BH, λBH

λBH+1
)

φ(b|AL, λBH

λBH+1
)

+ λBH
(

M

(1 + b)2
ξ + 4Nξ2

)

≤ b
φ(b|BH, b

b+1
)

φ(b|AL, b
b+1

)
+ b

(
M

(1 + b)2
ξ + 4Nξ2

)

which is smaller than π∗BH for small enough ξ.

The following lemma says: if society’s current belief Λ is sufficiently close to axis-λBH ,

and λBH is somewhere between s and π∗BH , then a sequence of actions b can push the society’s
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belief into the ε−neighborhood.

Lemma 31 With assumption 29, if

∀γ > 0,∃ΛTγs.t.xTγ > x0, λ
AH
Tγ < γ, λBLTγ < γ, λBHTγ ≤ π∗BH − ε/2 (45)

then there exists a γ0 and t0 such that

λAHTγ0+t0
({b}t0|ΛTγ0

) <
ε

2
, λBLTγ0+t0

({b}t0|ΛTγ0
) <

ε

2
, λBHTγ0+t0

({b}t0|ΛTγ0
) ∈ (πBH −

ε

2
, π∗BH ].

In other words, if we can push society’s belief arbitrarily close to axis−λBH while keeping

λBH below π∗BH , then we can always push the society’s belief to a proper position, from where

t0 actions b leads society’s belief into the ε−neighborhood.

Proof. Intuitively, there are two things to prove: (1) we can use a sequence of action b to

push λBH above π∗BH−ε/2; (2) λAH , λBL stays negligible so that λBH can’t move above π∗BH
due to monotonicity assumption 29.

For each ΛTγ , we construct an auxilliary process Λ̃ as following:

Λ̃Tγ = ΛTγ

λ̃BHt+1 = λ̃BHt
φ(b|BH, xdown)

φ(b|AL, xdown)
,∀t ≥ Tγ;

λ̃BLt+1

λ̃BHt+1

=
λ̃BLt
λ̃BHt

φ(b|BL, xdown)

φ(b|BH, xdown)
,∀t ≥ Tγ;

λ̃AHt+1

λ̃BHt+1

=
λ̃AHt
λ̃BHt

φ(b|AH, 1)

φ(b|BH, 1)
,∀t ≥ Tγ.

Here xdown = argmaxx∈[x0,xBH−δdown]
φ(b|BL,x)
φ(b|BH,x)

, xdown = argminx∈[x0,xBH−δdown]
φ(b|BH,x)
φ(b|AL,x)

, and

δdown is a small positive number defined in claim 41. This auxiliary process is constructed

with the purpose that
λ̃BLt
λ̃BHt

≥ λBLt
λBHt

and λ̃BHt ≤ λBHt . In this way, we could use auxiliary

values λ̃BL, λ̃BH to control the real values λBL and λBH .

We have following claim: ∀cdownE ∈ (0, ε/2
π∗BH−ε/2

) and ∀d ∈ (0, 1), ∃γ0 > 0 and t1 such that

λBHTγ0 > (1− d)
x0

1− x0

;
λAHTγ0
λBHTγ0

< cdownE ; λ̃BHTγ0+t1
> πBH − ε/2;

λ̃BLTγ0+t1

λ̃BHTγ0+t1

< cdownE . (46)
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In this paragraph we prove the above claim. First, we can verify that xTγ > x0 implies

that λBHTγ > −γ + x0
1−x0 . By choosing γ < min{d x0

1−x0 , c
down
E (1 − d) x0

1−x0} , we can have

λBHTγ > (1 − d) x0
1−x0 and λAHTγ < γ < cdownE (1 − d) x0

1−x0 . Then
λAHTγ
λBHTγ

< cdownE . Second, that ∃t1
such that

λ̃BHTγ0+t1
> πBH − ε/2;

λ̃BLTγ0+t1

λ̃BHTγ0+t1

< cdownE . (47)

This is equivalent to: ∃t1 such that

λ̃BHTγ
(φ(b|BH, xdown)

φ(b|AL, xdown)

)t1 > π∗BH − ε/2;

λ̃BLTγ

λ̃BHTγ

( φ(b|BL, xdown)

φ(b|BH, xdown)

)t1 < cdownE ;

which is further equivalent to

log cdownE − log λBLTγ

log φ(b|BL,xdown)

φ(b|BH,xdown)

+ log λBHTγ
[ 1

log φ(b|BL,xdown)

φ(b|BH,xdown)

+
1

log φ(b|BH,xdown)
φ(b|AL,xdown)

]
− log(πBH − ε/2)

log φ(b|BH,xdown)
φ(b|AL,xdown)

> 1.(48)

Since λBHTγ ∈ ((1 − d) x0
1−x0 , π

∗
BH − ε/2), as γ decreases, the left-hand side of 48 increases to

+∞, so t1 certainly exists. From here to the end of this proof, let’s choose a γ0(cdownE ) for

each cdownE ∈ (0, ε/2
π∗BH−ε/2

). For notation convenience, we write γ0 for γ0(cdownE ).

Intuitively, as λ̃BH increases slower than λBH , λBH must move above π∗BH − ε/2 before

period t1. We claim this intuition is true: ∃t ∈ {0, 1, . . . , t1} such that λBHt > π∗BH − ε/2.

In this paragraph, we prove the above claim. Let us use It1 as an abbreviation of index

set {0, 1, . . . , t1}. We first assume that ∀t ∈ It1 , λBHt ≤ π∗BH − ε/2. Under this assumption,

we have following inductive argument: ∀t ∈ It1 − {t1}, if

λ̃BLTγ0+t

λ̃BHTγ0+t

≥
λBLTγ0+t

λBHTγ0+t

; λ̃BHTγ0+t ≤ λBHTγ0+t; xTγ0+t ∈ [x0, xBH − δdown] (49)

then

λ̃BLTγ0+t+1

λ̃BHTγ0+t+1

≥
λBLTγ0+t+1

λBHTγ0+t+1

; λ̃BHTγ0+t+1 ≤ λBHTγ0+t+1; xTγ0+t+1 ∈ [x0, xBH − δdown] (50)
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The proof for the inductive argument is as following:

λ̃BLTγ0+t+1

λ̃BHTγ0+t+1

=
λ̃BLTγ0+t

λ̃BHTγ0+t

φ(b|BH, xdown)

φ(b|AL, xdown)
≥
λBLTγ0+t

λBHTγ0+t

φ(b|BH, xTγ0+t)

φ(b|AL, xTγ0+t)
. (51)

Here the inequality follows inductive assumption
λ̃BLTγ0+t

λ̃BHTγ0+t

≥
λBLTγ0+t

λBHTγ0+t
, xTγ0+t ∈ [x0, xBH − δdown]

and the definition that xdown = argmaxx∈[x0,xBH−δdown]
φ(b|BL,x)
φ(b|BH,x)

. The proof for λ̃BHTγ0+t+1 ≤
λBHTγ0+t+1 is similar. By assumption, λBHTγ0+t+1 ≤ π∗BH − ε/2. From claim 46 and the definition

of λ̃BL

λ̃BH
, we have

λ̃BLTγ0+t+1

λ̃BHTγ0+t+1

<
λ̃BLTγ0+t1

λ̃BHTγ0+t1

< cdownE . Therefore, xTγ0+t+1 ≤ xBH−δdown following claim

41. Finally, rewrite xTγ0+t+1 = 1
1+ 1

λBH
Tγ0+t+1

+λBL
Tγ0+t+1

1+λAH
Tγ0+t+1

. Then following inductive assumption

that xTγ0+t ∈ [x0, xBH − δdown] and the reasoning in 13, we have xTγ0+t+1 ≥ xTγ0+t. So

xTγ0+t+1 ∈ [x0, xBH − δdown]. We also verify that inductive assumption holds for t = 0.

Following the inductive proof, we must have λ̃BHTγ0+t1
≤ λBHTγ0+t1

. However, in claim 46 we

have λ̃BHTγ0+t1
> π∗BH − ε/2. This contradicts the assumption that λBHTγ+t ≤ π∗BH − ε/2 for all

t ∈ It1 .
Now let t0 = min{t|λBHTγ0+t > π∗BH − ε/2}. Then λBHTγ0+t ≤ π∗BH − ε/2 for all t ∈

{0, 1, . . . , t0 − 1}. The above inductive argument still works for t ∈ {0, . . . , t0 − 2}. There-

fore, we have that cdownE >
λ̃BLTγ0+t0−1

λ̃BHTγ0+t0−1

>
λBLTγ0+t0−1

λBHTγ0+t0−1
and that λBHTγ0+t0−1 ≤ π∗BH − ε/2. Further-

more, since observing action b always reduces λAH

λBH
,
λAHTγ0+t0−1

λBHTγ0+t0−1
<

λAHTγ0
λBHTγ0

< cdownE . Therefore,

λAHTγ0+t0−1, λ
BL
Tγ0+t0−1 < cdownE (π∗BH − ε/2).

To summarize, up to this point, we have proved that: ∀cdownE ∈ (0, ε/2
π∗BH−ε/2

) and ∀d ∈
(0, 1), ∃ γ0 ∈ (0,min{d x0

1−x0 , c
down
E (1− d) x0

1−x0}) and t0(γ0, Tγ0) such that

ΛTγ0+t0−1 ∈ [0, cdownE (π∗BH − ε/2)]2 × [(1− d)
x0

1− x0

, π∗BH − ε/2]. (52)

By choosing d small enough, we have [(1− d) x0
1−x0 , π

∗
BH − ε/2] ∈ ( s

1−s , π
∗
BH). (Recall x0 > s

is necessary for learning). Following lemma 30, we can find a cdownE small enough such that

λBHT+t0
≤ π∗BH . Therefore, λBHTγ0+t0

∈ (π∗BH−ε/2, π∗BH ]. Furthermore, we have
λAHTγ0+t0
λBHTγ0+t0

<
λAHTγ0
λBHTγ0

<

cdownE . So λAHTγ0+t0
≤ ε/2 as long as cdownE < ε/2

π∗BH
. Finally,

λBLTγ0+t0

λBHTγ0+t0

=
λBLTγ0+t0−1

λBHTγ0+t0−1

φ(b|BH,xTγ0+t0−1)

φ(b|AL,xTγ0+t0−1)
<

cdownE
φ(b|BH,x0)
φ(b|AL,x0)

. Here the last inequality following from that φ(b|BH,x)
φ(b|AL,x)

monotonically decreases

on (x0, xBH). (See result 2 in claim 42). Therefore, λBLTγ0+t0
< ε/2 as long as cdownE <
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ε/2
π∗BH

φ(b|BH,x0)
φ(b|AL,x0)

.

To summarize, we use cdownE to control the largest possible value for λAH , λBL in phase

II. As long as cdownE is small enough, λBH must increase but cannot jump above π∗BH , after

seeing a long sequence of action b. Furthermore, by choosing γ0 sufficiently smaller than

cdownE we can guarantee λAH , λBL < cdownE in phase II.

Then next lemma is very similar to the previous lemma. The only difference is that we

approach the confounded learning from above.

Lemma 32 With assumption 29, if

∀γ > 0,∃ΛTγ s.t. λ
AH
Tγ < γ, λBLTγ < γ, λBHTγ ∈ [π∗BH + ε/2, λ

BH
] ( (π∗BH ,

s

1− s
) (53)

then there exists a γ0 and t0 such that

λAHTγ0+t0
({b}t0|ΛTγ0

) <
ε

2
, λBLTγ0+t0

({b}t0|ΛTγ0
) <

ε

2
, λBHTγ0+t0

({b}t0|ΛTγ0
) ∈ [πBH , π

∗
BH +

ε

2
).

In other words, if we can push society’s belief arbitrarily close to axis−λBH while keeping

λBH above π∗BH , then we can always push the society’s belief to a proper position, from where

t0 actions b leads society’s belief into the ε−neighborhood.

Proof. For each ΛTγ , we construct an auxilliary process Λ̃ as following:

Λ̃Tγ = ΛTγ

λ̃BHt+1 = λ̃BHt
φ(b|BH, xup)
φ(b|AL, xup)

,∀t ≥ Tγ;

λ̃BLt+1

λ̃BHt+1

=
λ̃BLt
λ̃BHt

φ(b|BL, xup)
φ(b|BH, xup)

,∀t ≥ Tγ;

λ̃AHt+1

λ̃BHt+1

=
λ̃AHt
λ̃BHt

φ(b|AH, 1)

φ(b|BH, 1)
,∀t ≥ Tγ.

Here xup = argmaxx∈[xBH+δup,1]
φ(b|BL,x)
φ(b|BH,x)

, xup = argmaxx∈[xBH+δup,1]
φ(b|BH,x)
φ(b|AL,x)

, and δup is a

small positive number defined in claim 40.

We have the following claim: ∀cupE ∈ (0,min{ ε/2
πBH(πBH+ε/2)

, ε/2
πBH+ε/2

}), ∃γ0 > 0 and t1 such

that

λAHTγ0
λBHTγ0

< cupE ; λ̃BHTγ0+t1
< π∗BH + ε/2;

λ̃BLTγ0+t1

λ̃BHTγ0+t1

< cupE . (54)
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In this paragraph we prove the above claim. First, by choosing γ < cupE (π∗BH + ε/2) , we

can have
λAHTγ
λBHTγ

< cupE . Second, we can verify the existence of t1 is equivalent to

log cupE − log λBHTγ

log φ(b|BL,xup)
φ(b|BH,xup)

+ log λBHTγ

(
1

log φ(b|BL,xup)
φ(b|BH,xup)

+
1

log φ(b|BH,xup)
φ(b|AL,xup)

)
− log(π∗BH + ε/2)

log φ(b|BH,xup)
φ(b|AL,xu)

> 1 (55)

Since λBHTγ ∈ (π∗BH + ε/2, λ
BH

), as γ decreases, the left-hand side of 55 increases to +∞,

so t1 certainly exists. From here to the end of this proof, let’s choose a γ0(cupE ) for each

cupE ∈ (0,min{ ε/2
πBH(πBH+ε/2)

, ε/2
πBH+ε/2

}). For notation convenience, we write γ0 for γ0(cupE ).

We claim this intuition is true: ∃t ∈ {0, 1, . . . , t1} such that λBHt < π∗BH + ε/2.

In this paragraph, we prove above claim. Let us use It1 as an abbreviation of index set

{0, 1, . . . , t1}. We first assume that ∀t ∈ It1 , λBHt ≥ π∗BH + ε/2. Under this assumption, we

have following inductive argument: ∀t ∈ It1 − {t1}, if

λ̃BLTγ0+t

λ̃BHTγ0+t

≥
λBLTγ0+t

λBHTγ0+t

; λ̃BHTγ0+t ≥ λBHTγ0+t; (56)

then

λ̃BLTγ0+t+1

λ̃BHTγ0+t+1

≥
λBLTγ0+t+1

λBHTγ0+t+1

; λ̃BHTγ0+t+1 ≥ λBHTγ0+t+1; (57)

The proof for the inductive argument is as following:

λ̃BLTγ0+t+1

λ̃BHTγ0+t+1

=
λ̃BLTγ0+t

λ̃BHTγ0+t

φ(b|BH, xup)
φ(b|AL, xup)

≥
λBLTγ0+t

λBHTγ0+t

φ(b|BH, xTγ0+t)

φ(b|AL, xTγ0+t)
. (58)

By assumption, λBHTγ0+t ≥ π∗BH + ε/2. Also from claim 54, cupE >
λ̃BLTγ+t1
λ̃BHTγ+t1

>
λ̃BLTγ+t

λ̃BHTγ+t
. Following

claim 40, xTγ+t ∈ [xBH + δup, 1]. Then the inequality follows this, the inductive assumption
λ̃BLTγ0+t

λ̃BHTγ0+t

≥
λBLTγ0+t

λBHTγ0+t
, and the definition that xup = argmaxx∈[xBH+δup,1]

φ(b|BL,x)
φ(b|BH,x)

. The proof for

λ̃BHTγ0+t+1 ≥ λBHTγ0+t+1 is similar. We also verify that inductive assumption holds for t = 0.

Following the inductive proof, we must have λ̃BHTγ0+t1
≥ λBHTγ0+t1

. However, in claim 54 we

have λ̃BHTγ0+t1
< π∗BH + ε/2. This contradicts the assumption that λBHTγ+t ≥ π∗BH + ε/2 for all

t ∈ It1 .
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Now let t0 = min{t|λBHTγ0+t < π∗BH + ε/2}. Then λBHTγ0+t ≥ π∗BH + ε/2 for all t ∈
{0, 1, . . . , t0 − 1}. The above inductive argument still works for t ∈ {0, . . . , t0 − 2}. There-

fore, we have that cupE >
λ̃BLTγ0+t1

λ̃BHTγ0+t1

>
λBLTγ0+t

λBHTγ0+t
for all t ∈ {0, 1, . . . , t0 − 1}. By definition of t0,

λBHTγ0+t ≥ π∗BH+ε/2 for all t ∈ {0, 1, . . . , t0−1}. Use claim 40 again, xTγ0+t ∈ [xBH+δup, 1] for

all t ∈ {0, 1, . . . , t0−1}. Since φ(b|BH,x)
φ(b|AL,x)

< 1 for all x > xBH , we have λBHTγ0+t0−1 < λBHTγ0 < λ
BH

.

Furthermore,
λBLTγ0+t0−1

λBHTγ0+t0−1
,
λAHTγ0+t0−1

λBHTγ0+t0−1
< cupE . Therefore, λAHTγ0+t0−1, λ

BL
Tγ0+t0−1 < cupE λ

BH
.

To summarize, up to this point, we have proved that: For all small enough cupE , ∃ γ0 and

t0(γ0, Tγ0) such that

ΛTγ0+t0−1 ∈ [0, cupE λ
BH

]2 × [π∗BH + ε/2, λ
BH

]. (59)

From assumption 53, we have λ
BH

< s
1−s . So we can use lemma 30 to find a cupE small

enough such that λBHTγ0+t0
≥ π∗BH . Therefore, λBHTγ0+t0

∈ [π∗BH , π
∗
BH + ε/2). Furthermore, we

have
λAHTγ0+t0
λBHTγ0+t0

<
λAHTγ0
λBHTγ0

< cupE . So λAHTγ0+t0
≤ ε/2 as long as cupE < ε/2

π∗BH+ε/2
. Finally,

λBLTγ0+t0

λBHTγ0+t0

=

λBLTγ0+t0−1

λBHTγ0+t0−1

φ(b|BH,xTγ0+t0−1)

φ(b|AL,xTγ0+t0−1)
< cupE

φ(b|BH,xBH+δup)
φ(b|AL,xBH+δup)

. Here the last inequality following from that

φ(b|BH,x)
φ(b|AL,x)

monotonically decreases on (xBH , s). (See result 2 in claim 42). Therefore, λBLTγ0+t0
<

ε/2 as long as cupE < ε/2
π∗BH+ε/2

φ(b|BH,xBH+δup)
φ(b|AL,xBH+δup)

.

Lemma 33 If ∃λBH < s
1−s , and sub-sequence tk such that

λBHtk (hC1
tk
|Λ) < λ

BH
.

Then

λAHtk (hC1
tk
|Λ)→ 0;λBLtk (hC1

tk
|Λ)→ 0

and

xtk(h
C1
tk
|Λ) > x0 for sufficiently large tk.

Proof. Following lemma 20, we must have

λAH(hC1
tk
|Λ)

λBH(hC1
tk
|Λ)

+
λBL(hC1

tk
|Λ)

λBH(hC1
tk
|Λ)
→ 0.
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If λBH(hC1
tk
|Λ) < λ

BH
, we must have

λAHtk (hC1
tk
|Λ)→ 0;λBLtk (hC1

tk
|Λ)→ 0

That xtk(h
C1
tk
|Λ) > x0 for sufficiently large tk follows directly from claims 21 and 22.

Combine previous three lemmas, we have following proposition:

Proposition 34 If ∃λBH < s
1−s , and sub-sequence tk such that

λBHtk (hC1
tk
|Λ) < λ

BH
.

Then ∃ a finite sequence hCt0 such that

‖Λ(hCt0|Λ)− Λ∗‖ < ε.

Proof. If ∃λBH < s
1−s , and sub-sequence tk such that

λBHtk (hC1
tk
|Λ) < λ

BH
.

Then following lemma 33, ∀γ > 0, ∃Tγ such that either (1)xTγ > x0;λAHTγ < γ, λBL <

γ, λBHTγ < π∗BH − ε/2; or (2) λAHTγ < γ, λBL < γ, λBHTγ ∈ [π∗BH − ε/2, π∗BH + ε/2]; or (3)

λAHTγ < γ, λBL < γ, λBHTγ ∈ [π∗BH + ε/2, λ
BH

]. In case (1), we cite lemma 31; in case (2), ΛTγ

is in the ε−neighborhood; in case (3), we cite lemma 32.

If there is no such λ
BH

< s
1−s , there are two possibilities: either (1) λBH(hC1

t |Λ)→ +∞;

(2) λBH(hC1
t |Λ) doesn’t approach +∞, but ∃t such that λBHt (hC1 |Λ) ≥ s

1−s for all t ≥ t

provided that private signal is bounded. Following lemma 27, in both cases we have a

sub-sequence Tk + (Tk)
2 and we know the limit action frequency in this sub-sequence. In

the following proposition, we make use of this fact to push society belief below a bound

λ
BH

< s
1−s , while keep λAH , λBL negligible.

Proposition 35 If (1) λBH(hC1
t |Λ) → +∞; or (2) private signal is bounded, λBH(hC1

t |Λ)

doesn’t approach +∞, but ∃t such that λBHt (hC1|Λ) ≥ s
1−s for all t ≥ t. Provided that

log φ(a|AL, s)− log φ(a|BL, s)
log φ(b|BL, s)− log φ(b|AL, s)

>
log φ(a|BH, s)− log φ(a|AL, s)
log φ(b|AL, 1)− log φ(b|BH, s)

; (60)

then we can find a finite upper bound λ
BH

, and a finite sequence hC2
t0 (γ) for each small γ > 0
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such that

λAHt (hC2
t0 |Λ) < γ;λBLt (hC2

t0 |Λ) < γ;
x0

1− x0

(1 + γ) < λBHt (hC2
t0 |Λ) < λ

BH
.

Proof. Let fa and fb being as defined in 29. Then condition 60 is equivalent to ∃r > 0 s.t.

(φ(a|BH, s)
φ(a|AL, s)

)fa(φ(b|BH, s)
φ(b|AL, s)

)fb(φ(b|BH, s)
φ(b|AL, s)

)r
< 1;

(φ(a|BL, s)
φ(a|AL, s)

)fa(φ(b|BL, s)
φ(b|AL, s)

)fb(φ(b|BL, s)
φ(b|AL, s)

)r
< 1. (61)

Let us pick such a r and fix it through this proof. Since φ(b|BH, x), φ(b|AL, x), φ(b|BL, x)

are all continuous in x, we could find a x < s such that

(φ(a|BH, 1)

φ(a|AL, s)
)fa(φ(b|BH, s)

φ(b|AL, s)
)fb(φ(b|BH, x)

φ(b|AL, x)

)r
< 1;

(φ(a|BL, s)
φ(a|AL, s)

)fa(φ(b|BL, s)
φ(b|AL, s)

)fb(φ(b|BL, x)

φ(b|AL, x)

)r
< 1. (62)

We also pick and fix a x throughout this proof.

As argued in lemma 27, in both cases (1) and (2) , ∀k ∈ N, ∃Tk ∈ N, s.t. xt ∈ (s− 1
k
, 1]

for all t ≥ Tk. In particular, let us choose Tk as constructed in lemma 27. For each k and

Tk, we can construct an associated auxiliary process as following: Let Λ̃Tk+(Tk)2 = ΛTk+(Tk)2 ,

for each t ∈ {Tk + (Tk)
2 + 1, . . . , Tk + (Tk)

2 + dr(Tk)2e}, define Λ̃t’s evolution as following

λ̃AHt+1 = λ̃AHt
φ(b|AH, x)

φ(b|AL, x)
;

λ̃BLt+1 = λ̃BLt
φ(b|BL, x)

φ(b|AL, x)
;

λ̃BHt+1 = λ̃BHt
φ(b|BH, x)

φ(b|AL, x)
.

The idea for this construction is to use λ̃BL to control how fast λBL can increase; and use

λ̃BH to control how fast λBH can decrease.
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For each k and Tk, we have that

λ̃BLTk+(Tk)2+dr(Tk)2e
φ(b|AL, x)

φ(b|BL, x)
≤ λBLTk+(Tk)2

(
φ(b|BL, x)

φ(b|AL, x)

)r(Tk)2

= λBLTk

(
Π
Tk+(Tk)2−1
t=Tk

φ(hC1
t |BL, xt)

φ(hC1
t |AL, xt)

)(
φ(b|BL, x)

φ(b|AL, x)

)r(Tk)2

≤ λBLTk

{(
φ(b|BL, s∗bk )

φ(b|AL, s∗bk )

) #b

(Tk)
2
(
φ(a|BL, s∗ak )

φ(a|AL, s∗ak )

) #a

(Tk)
2
(
φ(b|BL, x)

φ(b|AL, x)

)r}(Tk)2

, (63)

where s∗αk ≡ argmaxx∈[s− 1
k
,1]

φ(b|BL,x)
φ(b|AL,x)

, α ∈ {a, b}. Here the first inequality just takes care

of the case that r(Tk)
2 is not an integer. The second inequality follows from that xt ∈

(s − 1
k
, 1], when t > Tk. Recall that φ(α|BL,x)

φ(α|AL,x)
= φ(α|BL,s)

φ(α|AL,s) for x ∈ [s, 1]. So we have, for

sufficiently large k and Tk, the big term within the curly bracket in 63 is sufficiently close to(
φ(a|BL,)
φ(a|AL,s)

)fa(φ(b|BL,s)
φ(b|AL,s)

)fb(φ(b|BL,x)
φ(b|AL,x)

)r
, which is strictly below 1 (see 62).

Similarly, for each k and Tk, we have that

λ̃BHTk+(Tk)2+dr(Tk)2e

≤ λBHTk

{(
φ(b|BH, s∗bk )

φ(b|AL, s∗bk )

) #b

(Tk)
2
(
φ(a|BH, s∗ak )

φ(a|AL, s∗ak )

) #a

(Tk)
2
(
φ(b|BH, x)

φ(b|AL, x)

)r}(Tk)2

, (64)

where s∗αk ≡ argmaxx∈[s− 1
k
,1]

φ(b|BH,x)
φ(b|AL,x)

, α ∈ {a, b}. (Here we use the same notation as in 63

just to avoid too many notations. ) For sufficiently large k and Tk, the big term in 64 is

sufficiently close to
(φ(a|BH,s)
φ(a|AL,s)

)fa(φ(b|BH,s)
φ(b|AL,s)

)fb(φ(b|BH,x)
φ(b|AL,x)

)r
, which is strictly below 1.

Now choose and fix a proper k, we have

lim
Tk→+∞

λ̃BHTk+(Tk)2+dr(Tk)2e = 0; lim
Tk→+∞

λ̃BLTk+(Tk)2+dr(Tk)2e = 0.

Arbitrarily choose and fix a γ > 0. For all

0 < cupE < min{ ε/2

π∗BH + ε/2
,

ε/2

π∗BH(π∗BH + ε/2)
,

γ

γ + φ(b|AL,1)
φ(b|BH,1)

1− x
x

,
1− x
x
− 1− s

1− s
};
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define λ
BH

= 1
1
x
−1−cupE

, for any γ, let us choose a Tk such that

λ̃BLTk+(Tk)2+dr(Tk)2e < γ;

λ̃BHTk+(Tk)2+dr(Tk)2e < λBH ;

λAHTk+(Tk)2

λBHTk+(Tk)2
< cupE ;

λBHTk+(Tk)2 > λ
BH

(65)

Here because cupE < 1−x
x
− 1−s

1−s , we have λ
BH

< s
1−s . We also have λ

BH
> π∗BH always holds.

Moreover, cupE < γ

γ+
φ(b|AL,1)
φ(b|BH,1)

1−x
x

implies that cupE < γ

λ
BH φ(b|AL,1)

φ(b|BH,1)
.

We claim: for the choosen Tk, there exists a t ∈ {Tk + (Tk)
2, . . . , Tk + (Tk)

2 + dr(Tk)2e}
(abbreviate this index set as ITk from now on) such that λBHt < λ

BH
. Assume not, then

∀t ∈ ITk , λBHt ≥ λ
BH

. Besides, ∀t ∈ ITk , we have
λAHt
λBHt

<
λAH
Tk+(Tk)

2

λBH
Tk+(Tk)

2
< cupE since φ(b|AH,x)

φ(b|BH,x)
< 1

always holds. We must have xt ≥ x for all t ∈ ITk following a similar argument as in 67.

Because x = argmaxx∈[x,1]
φ(b|BL,x)
φ(b|AL,x)

= argmaxx∈[x,1]
φ(b|BH,x)
φ(b|AL,x)

. (See claim 42), we could

build up following inductive argument for all t ∈ ITk : that λ̃BHt ≥ λBHt and λ̃BLt ≥ λBLt implies

λ̃BHt+1 ≥ λBHt and λ̃BLt+1 ≥ λBLt . The proof is direct: λ̃BHt+1 = λ̃BHt
φ(b|BH,x)
φ(b|AL,x)

≥ λBHt
φ(b|BH,x)
φ(b|AL,x)

≥
λBHt

φ(b|BH,xt)
φ(b|AL,xt) = λBHt+1. The first inequality follows from the inductive hypothesis, the second

inequality follows from that xt ≥ x for all x ∈ ITk .
This inductive argument leads to a contradiction:

λ
BH ≤ λBHTk+(Tk)2+dr(Tk)2e ≤ λ̃BHTk+(Tk)2+dr(Tk)2e < λ

BH
.

So there must exists a t ∈ ITk such that λBHt < λ
BH

. Let t0 = min{t ∈ ITk |λBHt < λ
BH}.

Above inductive argument still works for t ≤ t0 − 1; so we can conclude that λBLt ≤ λ̃BLt <

λ̃BLTk+(Tk)2+dr(Tk)2e < γ for t ∈ {Tk + (Tk)
2, . . . , t0}. Furthermore,

λAHt0−1

λBHt0−1
<

λAH
Tk+(Tk)

2

λBH
Tk+(Tk)

2
< cupE . Also

λBHt0−1
φ(b|BH,1)
φ(b|AL,1)

< λBHt0−1
φ(b|BH,xt0−1)

φ(b|AL,xt0−1)
= λBHt0 < λ

BH
, so λBHt0−1 <

λ
BH

φ(b|BH,1)
φ(b|AL,1)

. Thus λAHt0−1 < γ.
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Knowing that λAHt0−1 < γ, λBLt0−1 < γ, we have xt0−1 <
λBHt0−1+γ

λBHt0−1+γ+1
. Therefore

λBHt0 = λBHt0−1

φ(b|BH, xt0−1)

φ(b|AL, xt0−1)

> λBHt0−1

φ(b|BH, λBHt0−1+γ

λBHt0−1+γ+1
)

φ(b|AL, λBHt0−1+γ

λBHt0−1+γ+1
)

= (λBHt0−1 + γ)
φ(b|BH, λBHt0−1+γ

λBHt0−1+γ+1
)

φ(b|AL, λBHt0−1+γ

λBHt0−1+γ+1
)
− γ

φ(b|BH, λBHt0−1+γ

λBHt0−1+γ+1
)

φ(b|AL, λBHt0−1+γ

λBHt0−1+γ+1
)

> π∗BH − γ
φ(b|BH, λBHt0−1+γ

λBHt0−1+γ+1
)

φ(b|AL, λBHt0−1+γ

λBHt0−1+γ+1
)

(66)

Here the first inequality follows that φ(b|BH,x)
φ(b|AL,x)

monotonically decreasing. The last inequality

follows assumption 29. By choosing γ small enough π∗BH − γ
φ(b|BH,

λBHt0−1+γ

λBHt0−1+γ+1
)

φ(b|AL,
λBHt0−1+γ

λBHt0−1+γ+1
)

> x0
1−x0 (1 + γ).

Finally, We can verify that λAHt0 < γ
φ(b|AL,1)
φ(b|BH,1)

< γ.

Therefore, for any small γ > 0, there is a finite λ
BH

< s
1−s and a finite sequence of actions

hC2
t0 such that

λAHt (hC2
t0 |Λ) < γ;λBLt (hC2

t0 |Λ) < γ;
x0

1− x0

(1 + γ) < λBHt (hC2
t0 |Λ) < λ

BH
.

This sequence starts with hC1

Tk+(Tk)2 for some large k and large Tk; and ends with a long

sequence of action b.

It is direct to verify that

λAHt (hC2
t0 |Λ) < γ;λBLt (hC2

t0 |Λ) < γ;
x0

1− x0

(1 + γ) < λBHt (hC2
t0 |Λ)

implies that xt(h
C2
t0 |Λ) > x0. Therefore, we can again cite lemma 31 and 32 to conclude

that, with another finite sequence of action b following hC2
t0 , society’s belief is pushed into

the ε−neighborhood.

Following are a few computation results which is used in previous proof. The first claim

computes the minimum posterior weight associated to payoff state B, given that current
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weight is x ∈ (x0, 1].

Claim 36 Consider set Λ = {(pAH , pBL, pBH)|x = pBH + pBL, x ∈ (x0, 1]}, let

x(b) =
pBHφ(b|BH, x) + pBLφ(b|BL, x)

pAHφ(b|AH, x) + pALφ(b|AL, x) + pBHφ(b|BH, x) + pBLφ(b|BL, x)
,

where (pAH , pBL, pBH) ∈ Λ. Then

x(b) ≥ xφ(b|BH, x)

(1− x)φ(b|AL, x) + xφ(b|BH, x)
.

Proof. Since pBH + pBL = x, and pAH + pAL = 1 − x, we can rewrite x(b) just in terms

of pAH and pBH , where pAH ∈ [0, 1 − x] and pBH ∈ [0, x]. Then we compute and find that
dx(b)
dpAH

> 0, for the reason that φ(b|AH, x)− φ(b|AL, x) < 0 on x ∈ (x0, 1]. So

x(b) ≥ x(b)|pAH=0 =
xφ(b|BL, x) + pBH [φ(b|BH, x)− φ(b|BL, x)]

(1− x)φ(b|AL, x) + xφ(b|BL, x) + pBH [φ(b|BH, x)− φ(b|BL, x)]
.

Similarly we compute and find that d
dpBH

x(b)|pAH=0 < 0, for that φ(b|BH, x)−φ(b|BL, x) < 0

on x ∈ (x0, 1]. So

x(b)|pAH=0 ≥ x(b)|pAH=0,pBH=x ≥
xφ(b|BH, x)

xφ(b|BH, x) + (1− x)φ(b|AL, x)
.

Claim 37 Let F(x) = φ(b|BL,x)−φ(b|BH,x)
φ(b|BH,x)−φ(b|AH,x)

, then if

1. private signal is unbounded, then F′(x) > 0 on x ∈ (0, 1).

2. private signal is bounded, then F′(x) > 0 on x ∈ (s, s); and F′(x) = 0 on x ∈ (0, s] ∪
[s, 1).

Proof. First we compute F′(x) Since fB(x) = 1−x
x
fA(x), we can write

F′(x) =
fA(x)(pH − pL)

[φ(b|BH, x)− φ(b|AH, x)]2
A(x),

where A(x) = 1−x
x

[FB(x0)− pHFA(x0)]− 1−x
x

(1− pH)FA(x) + (1− pH)[FB(x)− FB(x0)].

We first show that A(x) > 0 on x ∈ [x0, 1]. We can verify that A(x0) > 0 and A(1) > 0.

Furthermore, we compute A′(x) = 1
x2

[(1−pH)FA(x)+pHF
A(x0)−FB(x0)]. We can see that

53



either (1) A′(x) < 0 on x ∈ [x0, 1] or (2) ∃ an unique x∗ ∈ (x0, 1] such that A′(x∗) = 0. In

the first case, obviously A(x) > 0 on x ∈ [x0, 1]. In the second case, We can see that A(x)

achieves minimum (1− pH)[FB(x∗)− FB(x0)] > 0 at x∗.

Furthermore, we observe that limx→0+ A(x) → +∞, and A′(x) < 0 on x ∈ (0, x0]. So

A(x) > 0 on (0, x0] as well.

If private signal is unbounded, then fA(x) > 0 on x ∈ (0, 1). Thus F′(x) > 0 on (0, 1). If

private signal is bounded, then fA(x) > 0 on x ∈ (s, s); and fA(x) = 0 on x ∈ (0, s] ∪ [s, 1).

And the second conclusion follows directly.

Claim 38 φ(b|AH,x)
φ(b|BH,x)

≤ 1 + pH [FA(x0)−FB(x0)]
pHFB(x0)+(1−pH)

< 1; φ(a|AH,x)
φ(a|BH,x)

≥ 1 + pH [FB(x0)−FA(x0)]
pH [1−FB(x0)]+(1−pH)

> 1.

Proof.

φ(b|AH, x)

φ(b|BH, x)
− 1 =

pH [FA(x0)− FB(x0)] + (1− pH)[FA(x)− FB(x)]

pHFB(x0) + (1− pH)FB(x)

≤ pH [FA(x0)− FB(x0)]

pHFB(x0) + (1− pH)FB(x)

≤ pH [FA(x0)− FB(x0)]

pHFB(x0) + (1− pH)
.

The other inequality can be similarly verified.

Claim 39 If x ∈ [x0, 1], then

φ(b|AH, x)

φ(b|BL, x)
≤ 1− max{φ(b|AH, x0)− φ(b|BL, x0), φ(b|AH, 1)− φ(b|BL, 1)}

pLFB(x0) + (1− pL)
< 1

φ(a|AH, x)

φ(a|BL, x)
≥ 1− max{φ(a|AH, x0)− φ(a|BL, x0), φ(a|AH, 1)− φ(a|BL, 1)}

pL[1− FB(x0)] + (1− pL)
> 1

Proof. Let f(x) = φ(b|AH, x) − φ(b|BL, x). It is direct to verify that f(x0) < 0 and

f(1) < 0. Furthermore, f ′(x) = fA(x)[(1−pH)−(1−pL)1−x
x

]. If private signal is unbounded,

then (1 − pH) − (1 − pL)1−x
x

strictly increases from (1 − pH) − (1 − pL)1−x0
x0

to 1 − pH .

Depends on whether (1 − pH) − (1 − pL)1−x0
x0

is negative, f(x) either strictly increases or

reaches an unique minimum somewhere between x0 and 1. If private signal is bounded, then

(1−pH)−(1−pL)1−x
x

strictly increases from (1−pH)−(1−pL)1−x0
x0

to (1−pH)−(1−pL)1−s
s

. If

(1−pH)−(1−pL)1−s
s
≤ 0, then f(x) strictly decreases on [x0, 1]. If (1−pH)−(1−pL)1−s

s
> 0,

then f(x) either strictly increases or reaches an unique minimum somewhere between x0 and

1.
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Therefore, f(x) ≤ max{φ(b|AH, x0) − φ(b|BL, x0), φ(b|AH, 1) − φ(b|BL, 1)}. The first

inequality follows directly. The verification of the second inequality is very similar, for the

reason that φ(a|AH, x)− φ(a|BL, x) = −f(x).

Claim 40 If λBHt ≥ πBH + ε
2

and
λAHt
λBHt

< cupE < min{ ε/2
πBH(πBH+ε/2)

, ε/2
πBH+ε/2

}, then xt >
1

1+cupE + 1
πBH+ε/2

> xBH . For notation convenience, we denote 1
1+cupE + 1

πBH+ε/2

as xBH + δup.

Proof. We have

xt =
λBHt + λBLt

1 + λAHt + λBLt + λBHt
=

1 +
λBLt
λBHt

1
λBHt

+
λAHt
λBHt

+
λBLt
λBHt

+ 1

>
1

1
λBHt

+
λAHt
λBHt

+ 1
>

1

1 + cupE + 1
πBH+ε/2

. (67)

It is direct to verify that cupE < ε/2
πBH(πBH+ε/2)

is equivalent to that 1
1+cupE + 1

πBH+ε/2

> πBH
πBH+1

.

Claim 41 If λBHt ≤ πBH−ε/2 and
λBLt
λBHt

< cupE < ε/2
πBH−ε/2

. Then xt <
1+cdownE

1+cdownE + 1
πBH−ε/2

< xBH .

For notation convenience, we denote
1+cdownE

1+cdownE + 1
πBH−ε/2

as xBH − δdown.

Proof. We have

xt =

λBLt
λBHt

+ 1

1
λBHt

+
λBLt
λBHt

+
λAHt
λBHt

+ 1
<

λBLt
λBHt

+ 1

1
λBHt

+
λBLt
λBHt

+ 1

<
1 + cdownE

1 + cdownE + 1
πBH−ε/2

.

It is direct to verify that cdownE < ε/2
πBH−ε/2

is equivalent to that
1+cdownE

1+cdownE + 1
πBH−ε/2

< πBH
πBH+1

.

Claim 42 We have following results:

1. φ(b|BL,x)
φ(b|BH,x)

is strictly increasing on (s, s), and is constant on (0, s) ∪ (s, 1).

2. φ(b|AL,x)
φ(b|BH,x)

is strictly increasing on (x0, s), and is constant on (s, 1).

3. φ(b|BL,x)
φ(b|AL,x)

is strictly decreasing on (xBH , s), and is constant on (s, 1).

4. φ(a|BL,x)
φ(a|AL,x)

is weakly increasing on x ∈ (1− ε, 1) for any small enough ε.
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Proof. To see the first result, we compute d
dx

φ(b|BL,x)
φ(b|BH,x)

= fB(x)FB(x0)(pH − pL), which is

strictly positive on (s, s) and 0 on (0, s) ∪ (s, 1).

To see the second result, we compute that d
dx

φ(b|AL,x)
φ(b|BH,x)

= fA(x)
[φ(b|BH,x)]2

g(x), where g(x) =[
(1 − pL)φ(b|BH, x) − (1 − pH)φ(b|AL, x)1−x

x

]
. We can prove that g(x) > 0 on x ∈ (x0, s)

as following: first, as x → x0, we have g(x) → (1 − pL)FB(x0) − (1 − pH)FA(x0)1−x0
x0

,

which is strictly positive since FB(x0) =
∫ x0

0
1−t
t
dFA(t) ≥ 1−x0

x0
FA(x0); second, we compute

g′(x) = (1− pH)φ(b|AL, x) 1
x2
> 0 on x ∈ (0, 1).

To see the third result, we similarly compute d
dx

φ(b|BL,x)
φ(b|AL,x)

= (1−pL)fA(x)
[φ(b|AL,x)]2

h(x), where h(x) =
1−x
x
φ(b|AL, x) − φ(b|BL, x). We can prove that h(x) < 0 on x ∈ (xBH , 1) as following:

first, we compute h′(x) = − 1
x2
φ(b|AL, x) < 0 on x ∈ (xBH , 1); second, we can prove that

as x → xBH , g(x) → 1−xBH
xBH

φ(b|AL, xBH) − φ(b|BL, xBH) < 0. Here, we need to use the

fact that FB(x) =
∫ x

0
1−t
t
dFA(x) ≥ 1−x

x
FA(x) for all x ∈ (0, s). Then 1−xBH

xBH
φ(b|AL, x) −

φ(b|BL, xBH) = pL[1−xBH
xBH

FA(x0) − FB(x0)] + (1 − pL)[1−xBH
xBH

FA(xBH) − FB(xBH)], where
1−xBH
xBH

FA(x0)− FB(x0) < 1−x0
x0

FA(x0)− FB(x0) ≤ 0; and 1−xBH
xBH

FA(xBH − FB(xBH)) ≤ 0.

To see the fourth result, we compute d
dx

φ(a|BL,x)
φ(a|AL,x)

= (1 − pL)fA(x)[−1−x
x
φ(a|AL, x) +

φ(a|BL, x)]. If private signal is of bounded strength, then obvious this derivative is 0;

if private signal is of unbounded strength, then we can always find a small enough ε to

guarantee that −1−x
x
φ(a|AL, x) + φ(a|BL, x) > 0.
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Weizsäcker, G. (2010): “Do We Follow Others When We Should? A Simple Test of

Rational Expectations,” American Economic Review, 100, 2340–60.

Williams, D. (1991): Probability with Martingales, Cambridge University Press.

Wolitzky, A. (2018): “Learning from Others’ Outcomes,” American Economic Review,

108, 2763–2801.

57



Ziegelmeyer, A., C. March, and S. Krügel (2013): “Do We Follow Others When
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