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Abstract

We analyze observational learning when a fraction of players are naive and act based
exclusively on their private information. Rational players are uncertain about the true
proportion of naive players. They simultaneously learn about this proportion and
about the payoff-relevant state. Confounded learning emerges as a robust phenomenon
in this environment, and could be globally stable-there’re environments where public
beliefs eventually settle down to confounded learning with positive probability, starting
from almost all current beliefs. We also show that correct learning is always globally
stable. In contrast, correct learning may not be globally stable when it arises due to

heterogeneous preferences as in Smith and Sgrensen, (2000).

1 Introduction

The seminal papers of |[Banerjee| (1992) and [Bikhchandani et al.| (1992) established the pos-
sibility of herd behavior and information cascades. These papers analyze Bayesian players,
who receive boundedly informative private signals, and learn from the actions of previous
actors. When incorrect herding happens, social learning stops; all but a finite number of
players end up choosing the wrong action, even though society could learn the correct state
if it were able to aggregate the information available to individuals. The possibility of incor-
rect herding depends crucially upon the private signals being boundedly informative. Smith
and Sgrensen| (2000) show that complete learning is guaranteed, if players have common

preferences, and their private signals are of unbounded strength. They show that learning



must necessarily be complete, i.e. the public belief must assign probability one to the true
state in the long run.

In this paper, we examine the implications of having a fraction of “naive” players, who
ignore the actions of their predecessors (or do not observe these actions). This assumption is
in line with experimental evidence. Laboratory experiments on herding models by Dufty et al.
(2016)),Weizsacker| (2010) and |Ziegelmeyer et al.| (2013) show that there exist individuals who
decide exclusively based on their own private information, ignoring prior actions. Provided
that the prior belief is not extreme, the presence of these naive people can potentially play
the same role as the assumption of unbounded signals, by ensuring that players’ decisions
always contain an amount of information that is bounded away from zero. Since each player
observed could be naive, his action statistically reveals his private information.

Following this intuition, it is straightforward to show that complete learning is guaranteed
for the rational players provided that the rational players know the precise proportion of naive
players, even when private signals are of bounded strength. However, it may be unrealistic
to assume that the rational players know the precise proportion of naive players. This leads
us to consider a model with higher-dimensional uncertainty — rational players are uncertain
both about the payoff relevant state, and about the proportion of naive players, and will
learn about both aspects as the game progresses. Our main finding is that complete learning
is possible, but it is not guaranteed. In the long run, learning could be confounded, with
the society’s limit beliefs assigning positive weight both to the true state — which is two-
dimensional — and its “opposite”, i.e. the state that is incorrect on both dimensions. That
is, if the true payoff relevant state is A and the proportion of naive players is L (for low),
society can assign positive probability to the pair (A, L) and to the pair (B, H). Since beliefs
about the payoff relevant state are interior at the confounded learning point, in the long run
each rational player still uses his private information to decide. Notably, confounded learning
arises even though all players have common values, i.e. identical preferences over state-action
pairs]T]

The message of the previous paragraph can be restated more precisely as follows: our
model shows that there exist multiple stationary points of the stochastic process of public
beliefs — the complete learning point, and the confounded learning point. This raises ad-
ditional questions. Is either of these points locally stable — does there exist a neighborhood

of the stationary point A such that if the current posterior beliefs lie in this neighborhood,

Smith and Sgrensen| (2000) show that confounded learning is possible when players do not have common
values. We discuss their work more fully later.



then the process converges to A with positive probability? Is either of these points globally
stable — does the process converges to A with positive probability, starting from any current
posterior belief, for a large set of initial priors that allow learning ?

Our answers to these questions, in the context of our model, are:

e Complete learning is globally stable.

e Confounded learning is globally stable under several conditions. (See Theorem

That confounded learning could be globally stable means such a pathological long run
learning result could arise whatever society’s current belief is. A social planner may want
to intervene and eliminate confounded learning. The global stability of complete learning
implies that the social planner only needs to generate a vague public signal to push society’s
belief away from the confounded learning point whenever society’s belief gets close. This
result is useful if precise public signals are expensive to generate or transmit.

In fact, complete learning is not always globally stable in models which permit confounded
learning. Indeed, we consider a simplified version of the model of |[Smith and Sgrensen| (2000)),
where confounded learning arises because players have sufficiently heterogeneous preferences.
If the prior assigns enough weight to the wrong payoff relevant state, and the belief updating
rule is monotonically increasing, then confounded learning happens for sure for such priors,
even if private signal is of unbounded strength. The basic reason is that the model in
Smith and Sgrensen (2000) has one-dimensional uncertainty, and in order to move towards
the complete learning point, the public beliefs process has to pass through the confounded
learning point, which is itself a stationary point. However, in our model, since uncertainty
is two-dimensional, passage through the confounded learning point is not required.

The paper is organized as follows. We first discuss the related literature. Section 2
sets out the model. Section 3 analyzes the evolution of society’s posterior beliefs along the
equilibrium path. In section 4 we explain the intuition for confounded learning, and provide
necessary and sufficient conditions for confounded learning to arise. In section 5 we compare
our model to a simplified version of the model in [Smith and Sgrensen| (2000). We establish
that complete learning is not globally stable in this version of the SS model, but is guaranteed

in our model. Section 6 shows that confounded learning could be globally stable.

1.1 Related Literature

There is an extensive literature on observational learning. In this section, we focus our

attention on the papers that are most closely related.



Smith and Sgrensen, (2000) (SS henceforth) provide a comprehensive analysis of observa-
tional learning, and also developed many of the technical insights that underlie the analysis
in the present paper. They were also the first to show that confounded learning is possible
when players have divergent preferences. P| In SS, a fraction of players would like to choose
their action to match the state, while the remaining fraction prefer to mismatch action and
state. In our paper, the underlying economic environment that gives rise to confounded
learning is very different. Players have common values, and every player would like her ac-
tion to match the state. Since players do not also know the true proportion of naive players,
uncertainty is two-dimensional in our model, while it is one-dimensional in SS. Our substan-
tive results also differ. In SS, confounded learning could preclude the possibility of complete
learning. In our model, complete learning must happen with strictly positive probability
and is globally stable.

Bohren (2016)) allows for naive players, and assumes that rational players have a wrong
but fixed belief about the proportion of naive players. She finds that if the belief is not too
wrong, complete learning is guaranteed, but for a large error, posterior-belief process may
eventually assign probability zero to the true state or fail to converge. Our results are very
different — there cannot be incorrect learning, and there can be confounded learning. These
differences arise since rational players use history to revise their beliefs on the true proportion
of naive players. Bohren and Hauser| (2018)) generalizes the previous work by allowing more
channels of mis-specifications. A player’s subjective distribution of private/public signals
can be different from the true distribution. As a result, a player’s subjective posterior belief
conditional on a given signal can be different from the correct posterior belief. A player’s
type is specified through his subjective beliefs of signal distribution and of other players’
types distribution. This generalizes the setting in |Bohren! (2016): a player could mistakenly
believe that private signal is uninformative and all other players hold the same wrong belief.
Such a player is a noise player whose action demonstrates no information. A naive player
in Bohren| (2016)) can be modeled as a player who correctly interpret the private signal but
mistakenly think other players all acts noisily. A (biased) rational player can be modeled as
a player who correctly interpret the private signal but holds a fixed wrong belief about the
proportion of naive player. They found that if each player’s interpretation of signals and
belief of other players’ types distribution are not too wrong, then all types correctly learn the

true state in the long run. Otherwise, different types may eventually disagree; some types’

ZEasley and Kiefer| (1988) examine individual learning (rather than social learning) and find that con-
founded learning is possible, for non-generic parameters.



long run posterior beliefs may settle down while other types’ posterior beliefs keep cycle. It
is also possible that all types assign all the weight to the wrong state in the long run.

After completing the first draft of this paper, we found that it has antecedents in Bohren’s
unpublished Ph.D. thesis (Bohren (2012)), where also rational players learn the true pro-
portion of naive players. She provides an example with binary signals that shows that the
realized state and the opposite state could be indistinguishable in the long run. We believe
that the results presented here constitute a more systematic and comprehensive analysis
of the problem. In particular, we generalize the analysis to the case there is a continuum
of private signals, and we examine local and global stability of the stationary points. We
also establish that the existence of confounded learning is robust with small perturbation of
model primitives. In |Bohren| (2012), the confounded learning will disappear if the primitives
of the model are perturbed.

Other related literature include Eyster and Rabin (2010) and Acemoglu et al. (2010).
Eyster and Rabin| (2010) assumes every player is rational but mistakenly think other players
are naive. They find incorrect herding could happen even with continuum actions and
unbounded signals. |Acemoglu et al.| (2010]) assumes two types of players who differ in their
preferences. Confounded learning arises when preferences are sufficiently heterogeneous.

Wolitzky! (2018]) studies technology-adoption using a deterministic social learning model.
In his model, new players arrive continuously at a constant rate to a continuum population.
Each new player learns whether to adopt a new technology after sampling “K” outcomes
from the current population. The current technology generates a good outcome with a
known probability, and the new technology generates a good outcome with state-dependent
probabilities. Though the new technology always succeeds with a high probability under the
good state than the bad state, this high probability may or may not be higher than the success
probability of the current technology. If the success probability of the new technology under
the good state is lower than that of the current technology, the new technology actually
perform worse than the current one. However, it may still be efficient to adopt the new
technology under the good state for the reason that it introduces enough reduction in cost.
Wolitzky refers to above case as cost-saving technology innovation. A traditional case where
the new technology succeeds with higher probability than the current technology at the
good state is referred as outcome-improving innovation. One of Wolitzky’s finding is that
the complete learning (fully adoption of new technology at good state and fully rejection at
bad state) can never be reached if the initial adoption rate is separated from the efficient

adoption point by a line representing confounded learning. The intuition is that observations



of “K” outcomes is uninformative when the adoption rate is close enough to the confounded
learning line, then the equilibrium dynamics move away from the efficient point, rather than
cross the confounded learning line and move close to the efficient point. To the best of my
knowledge, the above result is the closest result to my Theorem [I8] Theorem [I§| states that
the complete learning point can never be reached if it is separated from the initial belief
by a confounded learning point, for the reason that observations is uninformative near the
confounded learning point, hence the belief dynamics cannot cross the confounded learning

point.

2 Model

The model is an infinite horizon, discrete-time model. There is a two-dimension uncertainty:
payoff-relevant states €; = {A, B} and proportions of naive players €y = {L,H}. For
abbreviation, we shall refer w; € {2; as “payoff state”, and wy € {25 as “type state”.

In period 0, nature chooses one state out of four potential states
Q=0 xQy={AL,AH,BL,BH}

according to a common prior Ag = (A, \BE ABH). Throughout this paper, a belief over

the state space €2 is written as three ratios with the probability associated with state AL in

\AH — Pr(AH|0)
0 Pr(ALID) -

In each period ¢t > 1, one player arrives. He chooses between actions {a,b} with the

the denominator. For example:

objective to match the realized payoff state. The utility function w : {a,b} x ; — {0,1} is

identical for every player and is given as
u(a,A)=(b,B)=1; wu(a,B)=u(b,A) =0. (1)

As standard in the literature, one player’s payoff depends only on his action and the realized
payoff state, and is independent from other players’ actions.

Before taking an action, each player observes a private signal S; from a common signal
space. The distribution of the private signal depends on the realized payoff state. Following
the literature, we identify a player’s private signal S; with his private belief s, as if the payoff



state is equally likely to be A and B:

Pr(St|A)%
Pr(8;|4); + Pr(S|B)3

St — Pr(A|St> = (2)
In other words, the private belief s; of player ¢ is the probability attached to payoff state
being A conditional solely on the private signal S;. The distribution of s; is denoted as
F“r(s) with wy € {A, B}. We assume S, is i.i.d across players, and hence so is s;. We further

introduce the following assumption:

Assumption 1 FA(s) and FB(s) are mutually absolutely continuous, non-atomic, and have

common Support as

supp(F*(s)) = supp(FP(s)) = (5,5) C (0,1),

where s < 1 <5. FA4(s), FB(s) are twice continuously differentiable on (s3).

The prior belief is not so extreme that naive players always choose one action:

‘- AT+ AGE
LN AP NG

<3. (3)

Note that here we do not make an assumption on the strength of private signals. All the
arguments apply to both bounded and unbounded private signals, provided that condition
[Blis satisfied.

Rational players also observe the public history of previous actions. If player ¢ is rational,
then he observes h; = (ay,...,a;_1), i.e the sequence of actions taken in previous periods.
Naive players do not observe any previous actions. The realization of each player to be naive
is i.i.d across players. The probability that any player is naive is either p;, or py, depending

on the realized type state.

3 The Process of Learning

Our analysis focuses on the posterior belief over the state space €2 conditional on a realized
public history h;. Specially, we ask whether the society’s posterior beliefs settle down to a
limit belief, and whether this limit belief assigns all the weight to the realized state. Following
the literature, we say “the society learns” if the posterior beliefs settle down to a limit belief.

Furthermore, we say that “learning is complete” if the limit belief assigns all the weight to



the realized state w € (). Complete learning guarantees information aggregation, and is of
particular interest.

In this section, we study how posterior belief evolves from period ¢ to period t + 1. We
conclude that posterior beliefs always settle down as a result of martingale property. In other
words, society always learns.

First, we solve for the unique sequential equilibrium. Without loss of generality, from
now on we assume the realized state is AL. We introduce the following notation. Player t’s
information set is denoted as I, = {s;, PI;}, where PI is an abbreviation used for “public
information”. If player ¢ is rational, then PI, = hy; if player t is naive, then PI; = (). Player
t’s strategy oy is a function from I; to a distribution over actions {a,b}. For each w € Q,
strategies o1, ..., 0; determines the probability of each history hyy1 € {a,b}'. We use P; to
denote the probability measure induced on H; = Q x {a, b}, with the understanding that P,
actually depends on some strategy profile. ﬂ Strategies o = {07, ...} form an equilibrium if
vt

o Pro1(BIPIt) 1—s .
AT L =TT "
o b ifwlf&t > 1
’ P;_1(A|PL) s =

This definition is actually quite intuitive. Because public information PI; is independent
P;_1(B|PIy)
P, 1 (A|PTy)

state being B over being A conditional on player t’s information set I;. Therefore, definition

of private belief s, 1;—tst actually represents the posterior likelihood ratio of payoff
[] says o is an equilibrium if player ¢ choose the action matching the more plausible payoff
state conditional on his information set.

One immediate observation from definition [4| is that player ¢’s equilibrium strategy can

be represented as a cutoff rule in terms of his private belief s;.

Lemma 2 Up to a tie-breaking rule, the unique equilibrium s given as

> R 0l . .
St Z NPT IBL AT if player t is naive; 5)

s¢ > Py_1(Blhy), if player t is rational.

Oy = a <

In the above lemma, we assume action a is chosen when the player think two payoff states
are equally plausible. This tie-breaking rule is immaterial, since the probability of a tie is

zero due to continuous private belief.

3Here Py(w x hyy1) > 0 for all w € Q and hyyq € {a,b}?, since naive players exist.



From now on, we use o to denote the equilibrium given in Lemma[2] use P, to represent the
probability measure on H; induced by the equilibrium, and use IP to represent the probability
measure on H = Q x {a, b}" induced by the equilibrium. When we talk about the posterior
belief conditional on hy, it is the posterior belief with respect to P;_;. Since there are four
potential states {AL, AH, BL, BH}, we can summarize society’s posterior belief at period
t as a random vector of three likelihood ratios. With probability associated with the true

state AL in the denominator, we write the posterior belief A; as

P, \(AH|h) P, (BL|h:) Pt_l(BH|ht)>

Ap= (NMAPE NPT =
t (t » N N ) ([Pt_l(AL|ht)’Pt_l(AL“Lt),Pt—l(AL“Lt)

(6)
We denote the equilibrium probability of o, = a,Va € {a,b} at state wjwy with belief

Ay as ¢(a|wiwsa, Ay). To represent the equilibrium probability, it is convenient to introduce

random variable z;(A;) for a belief A; = (MM, \BL \BH) a5

ABH 4 )P

Ay) = .
1) = Ay A

(7)
We can verify that z;(A¢(ht)) = Pi—1(Blht). Then we have

Pun (1= F** (0)) + (1 = pu, ) (1 = ' (24)), i @ = a;

<Z5(Oé|w1w2,/\t) = ¢(Oé|w1w2,$€t) = )
P F (20) + (1 — puoy ) F (x4), if o =b.

>\0BH+>\OBL
Y e Y Sy
payoff state being B at prior belief (\g'1, \BL \BH).

With posterior belief A; defined, we can state the definitions of learning rigorously.

Here and from now on, we use zy = to represent the probability assigned to
Definition 3 Given a history h € {AL} x {a,b}Y, the society learns along h if
t — +oo = (MM (h), \BE(h), \BH(h)) converges
and learning is complete along h if
A (R), APE(h), AP () = (0,0, 0).

At the beginning of this section, we vaguely state that the society learns if posterior beliefs

settle down. Here “settling down” is rigorously defined using the notion of convergence.



Furthermore, since in A¢(h) the posterior probability associated with realized state AL is in
the denominator, A;(h) — (0,0,0) means that all the weight is assigned to AL.

The following lemma shows that \¢'“?) when restricted on {AL} x {a,b}Y, forms a
non-negative martingale for wywy € {AH, BL, BH}. The martingale convergence theorem
(Theorem 11.5 in Williams) (1991))) states that a non-negative martingale almost surely con-
verges to a finite random variable. Therefore, we conclude that almost surely posterior beliefs
always settle down to a limit belief along the equilibrium, and the society (almost) always

learns.

Lemma 4 For wywy € {AH,BL,BH}, {\*“?}ien forms a non-negative martingale when
restricted to {AL} x {a,b}N.

Proof. See Appendix[A] m

Proposition 5 There erists a null set E C {AL} x {a,b}", such that for any sequence of
actions under the realized state h € {AL} x {a,b} — E, we have

A (R), AEE(R), AT () — (NS (R), AZE (R), AZ (), (8)

with \X2“? < 400, wiwy € {AH, BL, BH}.
In other words, conditional on realized state AL, the posterior belief (AN, NBL \BH)

converges almost surely to a finite random vector.

Proof. This result follows directly from lemma [4] and the martingale convergence theorem
(Theorem 11.5 in |Williams| (1991)). m

4 Possibility of Confounded Learning

In the previous section, we showed that society’s posterior beliefs settle down to a limit belief
almost surely. A natural question is whether the limit belief necessarily assigns all the weight
to the realized state AL, i.e. whether learning is complete. In this section, we conclude that
it is not necessarily the case. If the proportion of naive players in H-state is sufficiently higher
than in L-state, then it is possible that the limit belief assigns positive weights to both states
BH and AL, and 0 weight to states AH and BL. Under such a limit belief, any observed
actions happen with equal probability across BH and AL. Therefore, in the limit, even if
players still use their private information to decide, their actions stop providing information
regards the likelihood ratio of BH and AL. Following Smith and Sgrensen| (2000), we say

10



“learning is confounded”. Confounded learning is very different from information cascade.
When learning stops due to an information cascade, the information contained in publicly
observed actions overwhelms any player’s private signal. As a result, all the players abandon
their private signals and herd. However, in confounded learning, the information contained
in public actions is inconclusive, and players still use private information to decide.

We can intuitively understand this result in the following way. Since society’s posterior
beliefs always settle down, the observed action frequency also settles down. Without loss
of generality, we can think in terms of the frequency of action b. To have positive weight
assigned to state BH, the observed limit frequency of action b must be plausible under BH.
When the payoff state is B rather than A, then both types of players are more likely to
choose action b. However, the increase of limit frequency of action b due to payoff state
change can be balanced by the type state changing from L to H. If the limit belief assigns
more weight on payoff state being B than the prior belief does, the rational players, who
observe the limit belief, are more likely to choose action b. There are fewer rational players
under state BH, hence the limit frequency of action b will move down.

To summarize, if the limit belief assigns more weight to the payoff state being B than
the prior belief does, then in state AL, actions b is generally less likely, but there is a
high proportion of rational players can counterbalance the effect. In state BH, action b is
generally more likely, but there is low proportion of rational players. These two forces can
be balanced, provided that there is a sufficient fall in the number of rational players from
AL to BH. In fact, this balance is a special case of Simpson’s paradox. The probability of
action b is strictly higher among rational players and among naive players under state BH
than under state AL. However, the average probability among all players could be equal
across these two states, as long as there is a sufficient change of proportion of naive players.

A similar argument shows that the limit belief cannot assign positive weight to AH
and BL. In fact, any observed limit frequency of action b is incompatible with state BL.
Knowing the limit belief, rational players know the frequency of action b should be higher
than observed if the state is BL. See Proposition [7] for an argument of AH.

Above findings generalize the observation in section 1.4 of |Bohren| (2012)). Bohren stud-
ies learning with unknown proportion of naive players in a special example with symmetric
binary private signals. She observes that with proper parameters two different states may
be indistinguishable in the long run, for the reason that the probability of observable actions
is the same across these two states. Though her observation bears similar characteristic, our

findings are more general and insightful. With a symmetric binary signal structure, param-

11



eters in her model must satisfy one “equation” to lead to incomplete learning. This means
incomplete learning is not a robust phenomenon in her model. With slight perturbation of
the parameters, incomplete learning disappears. Our model assumes a continuous private
signal structure. The condition of confounded learning is determined by inequality [I0] Hence
confounded learning is a robust phenomenon in our model. The assumption of symmetric
binary signals also simplifies the argument. With proper parameters, the likelihood ratio
between these two indistinguishable states stops evolving immediately after herding. In our
model, as long as posterior belief at period ¢t doesn’t equal the confounded limit belief, all
the likelihood ratios still adjust upon observing period t’s action. Therefore more dynam-
ics analysis is needed. We shall explore the dynamics property of our model in following
sections.

Smith and Sgrensen| (2000) finds confounded learning could arise when players have
sufficiently heterogeneous preferences. We remark that our result is quite different from
theirs. From the economics perspective, our model assumes all the players have common
values, and confounded learning arises because of the unknown proportion of naive players.
In the next section, we shall further explore the difference between our model and theirs
from the belief dynamics perspective.

In the rest of this section, we formalize above intuition of confounded learning’s existence.
The first observation is due to Smith and Sgrensen (2000), and states that society’s limit

belief must be a stationary point of stochastic process A; = (A, \BL \BH),

Lemma 6 Letw = (may, L, pa) € R® satisfying that m,,., > 0, Vwyws € {AH, BL, BH}.
Let

S = {h € {AL} X {a’v b}N|(/\foH<h)7 /\S;L(h)7 /\oBoH(h)) = (WAHa TBL, WBH)}'
IfP(S) > 0, then

- _ o(a|wywe, )
e =T T AL )

Va € {a,b}. 9)

In other words, if stochastic process Ny converges to (Tay, T, Tey) with strictly positive

probability, then (Tap, TpL, Tpr) must be a stationary point of A,.

Proof. The result follows Theorem B.2 in Smith and Sgrensen| (2000). =
Equation [J] says that m,,,, # 0 implies ¢(a|wiws, ) = (AL, ). Intuitively, this

means that if limit belief (may, 7L, Tpy) assigns positive weight to state wjws , then limit

12



frequency of action o € {a,b} must be indistinguishable across states wiw, and AL.
Using Lemma [0, we can prove our intuition that the limit belief must assign zero weight
to states AH and BL.

Proposition 7 If stochastic process (\A NBL NBHY converges to (map, mpr, T ) with strictly

positive probability, then mag = wpr = 0.

Proof. First, we have
¢(b|BL, x(m)) = pLFP(wo) + (1 — pr) F¥ (x()),

and that
G(D|AL, x(m)) = pLF*(x0) + (1 — pr) F* (2(m)).

By definition fjgz; = 1= 50 fB(s) > f4(s) on (s,%) and f5(s) < f4(s) on (3,5). Then it
follows that

T

®
=
\Y

FA(s), if s € (s,3);
FA(s), if s € ]0,5] U5, 1].

*q

!

o)
I

Due to assumption that =y € (s,5), we have ¢(b|BL, ) > ¢(b|AL, ).

Second, we have
O(b|AH, x(m)) = pr F (x0) + (1 — prr) ' (w()).
To have ¢(b|AH, ) = ¢(b|AL, ), we must have z(m) = zo. But if this is the case, then
o(0|BH, ) = FP(x0) # F(x0) = ¢(b|AL, ),

which means mgy = 0. That is, z(w) = zo implies that zero weight must be assigned to
state BH. We have shown that zero weight must be assigned to state BL in the first part of
this proof. Therefore, x(m) = o implies that zero weight must be assigned to payoff state
being B under belief 7r,; and this is a contradiction. m

In the next proposition, we rigorously prove that the limit belief can assign positive
weight to state BH if it assigns more weight to payoff state being B. We can also prove that

such a limit belief must be unique.
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Proposition 8 If

¢(b|AL,S) > ¢(b|BH,3) (10)

then there exists unique Tpy > max{{™%-, 11:];;’} such that

(b(b’AL’(OaOvﬂ-*BH)) = ¢<b|BH7 (070777—*BH>> (11>

In other words, when condition is satisfied, A* = (0,0, 75) gives the unique limit belief

where the observed frequency of action b is compatible with state BH.

Proof. Let

D(x) = ¢(b|BH,x)— ¢(b|AL,x)
= [paF"(w0) + (1 — pu) FP ()] — [pLF* (x0) + (1 — pp) F(2)]

be defined on = € [0, 1]. Condition[10]is equivalent to that D(3) < 0. Since F¥(xq) > F (),
D(x9) > 0 and D(s) > 0 always hold. We have

D'(x) = (1= pu) f¥(2) = (1= pr) ().

IA(s) s 7 =) 2—pH—pL 2—pH—PL

Thus, there is an unique z* € (max{xy, Q_IP_H:”pr},E) such that ©(z*) = 0. Uniqueness of

By definition %) = 1= 5o /() > 0 on (s, 552) and D'(z) < 0 on (F2L_ 3).

gy follows directly. m
We conclude this section by stating that long run learning is either complete or con-
founded.

Proposition 9 If stochastic process (AM NBL NBH) converges to (maw, 7pL, Tr) with pos-
itive probability, then either (mamg, 7L, mer) = (0,0,0) or (mam, 7L, eH) = (0,0,75y),

where Ty solves equation[11]. In other words, learning is either complete or confounded.

Proof. This follows directly from Lemma [6] and Proposition[§ m

5 Complete Learning is Globally Stable

In the last section, we show that long run learning needs not to be complete despite the

existence of naive players. In this section, we show that although complete learning will not
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M stateA stateB MM  stateA stateB
a U 0 a 0 1
b 0 1 b v 0

Table 1: Payoff Tables of the simplified SS model

arise for sure, for a generic prior it will arise with strictly positive probability. This is true
even if private signal is of bounded strength, as long as naive players’ actions are informative.
Therefore, the existence of unknown proportion of naive players still helps long-run learning.
Besides, in this section we shall see that such help does not only come from that naive
players’ actions are always informative. The effect of the “unknown proportion” is also
subtle. We shall show that in a simplified version of the model in Smith and Sgrensen
(2000), confounded learning could preclude complete learning, provided that belief updating
rules monotonically increase and that prior belief assigns enough weight to the wrong state.
We shall see that complete learning never arise because the paths of belief evolution are
restricted in their model. The “unknown proportion” of naive players, however, allows more
freedom in belief’s evolution, by increasing the dimension of posterior beliefs from 1 to 3.
This section consists of two subsections. In the first subsection, we present simplified
version of SS’s model and show how complete learning can fail. In the second subsection,

we prove that complete learning always arise with strictly positive probability in our model.

5.1 Confounded Learning can Prevent Complete Learning

In this section, we consider a simplified version of SS’s model and show that: if the con-
founded learning point separates the prior belief and the complete learning point, then
complete learning can never happen.

The simplified SS’s model can be described as following: there are two payoff-relevant

states {A, B}. In period 0 nature chooses one state according to some common prior A\g =

Pr(B|0)
Pr(A|0)

be a “Match” type or a “Mismatch” type. The Match type chooses between actions a,b

€ (0,+00). In each period ¢t > 1, there is one player arrives. This player ¢ can either

to match the realized payoff state; the Mismatch type chooses from the same action set to
mismatch the realized payoff state. The payoff table for each type is given as in Table [1}
The probability of player ¢ to be a Match type is commonly known as p € (0,1). Both types
of players observe the realized history and a private signal S; whose distribution depends on
the realized payoff state. We also identify one player’s private signal with his private belief

through s; = Pr(A|S;) as if the prior is flat. We assume that S;, and hence s; are i.i.d across

15



players. The distribution of s; under state w is denoted as F*(s). We further assume that
FA(s) and FB(s) are mutually absolutely continuous, have common support (0,1) and are
both non-atomic.

The differences between our model and SS’s model are in two perspectives. First, players’
types are different. In our model, every player wants to match the realized payoff state. The
type is specified by whether a player observes the realized history. In SS’s model, every
player observes the realized history. The type is specified by whether a player want to match
the realized state. Second, in our model, the distribution of players’ types is unknown. In
SS’s model, however, the proportion of players who want to mismatch the realized payoff
state is known as 1 — p. Here, we only consider SS’s model with unbounded private signal
strength. With unbounded private signals, it is not the bounded private signal that leads to
the failure of complete learning.

Below we intuitively describe the reason that complete learning may never arise. The
rigorous statement and proof are deferred to Appendix [B]

Let us assume the realized payoff-relevant state to be A. Let society’s posterior belief
Pr(B|ht)
Pr(Alhe) *
limy oo Ay = 0. Let p(a, ) be the posterior belief updated from prior A conditional on

at period t be denoted as likelihood ratio \; = Then complete learning means that
observing action « € {a,b}. Belief updating is monotonically increasing if ¢(\, «) is strictly
increasing in A for o € {a,b}. In other words, given two priors A and X with prior A assigning
more weight to state being B than prior X does; then the posterior belief updated from A
must assign more weight to state B than the posterior belief updated from X\ does, whatever
actions are observed. With proper parameters, confounded learning arise in this model (See
Proposition |17 for details). Existence of confounded learning is equivalent to IA* € R, such
that

©(A\*, o) = A", Va € {a, b}.
Then if Ay > A*, the monotonicity assumption guarantees that
Air1 = (A, @) > p(N",a) = NVt > 0,Va € {a,b}.

So if prior belief is above A*, monotonic belief updating rules prevent posterior belief move
across A* to reach the complete learning, which is 0. Therefore, the society’s posterior belief
can never assign all the weight to the truth after any realized action sequence.

In Figure [I, we plot the belief dynamics with proper parameters and private signal
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Figure 1: An example where complete learning never happens

distributions F'4(s) = s, FB(s) = 2s—s2. In that diagram we have one confounded learning
point \* &~ 0.7746. The zig-zag blue line represents how belief evolves when prior is flat
and a sequence of action b is observed. We could intuitively see that if Ay > A*, then

limy 100 At(h) = A* for any other possible action sequence h.

5.2 Complete learning always arise with strictly positive proba-

bility with unknown proportion of naive players

Let us start by reviewing the reason that complete learning never happens in the previous
section. In the simplified SS’s model, each confounded learning point A\* separates the space
of belief \; into two disconnected components. When the prior Ay and the complete learning
point A\, = 0 are on disconnected components, the belief \; must pass through the con-
founded learning point A\* to reach the complete learning point. However,the monotonically
increasing belief updating rule prevents such a passing through.

This problem is solved, when we have unknown proportion of naive players. As we can
see in Figure , starting from a generic prior, posterior beliefs (A\AH A\BL \BH) can reach the
complete learning point without passing through the confounded learning point, due to the
fact that the uncertainty is of two dimension.

In this section, we rigorously prove that complete learning happens with strictly positive
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Figure 2: Global convergence to complete learning

probability for a generic set of priors defined as following:

MBH 4 \BL

AH \BL \BH 3
PB={(\", A7) €RY s < NPH | \BL | \AH ||

<35, ¢(b|AL,S) > ¢(b|BH,3)}.

)\(I)S’H_’_)\(I)BL
AGHANGEA M 41
this assumption, prior is so biased that each player just blindly follows the prior. We need

¢(b|AL,3) > ¢(b|BH,S) so that the question is not trivial. After all, dropping this assump-
tion eliminates confounded learning (see Proposition, then complete learning must happen
with probability 1.

In Lemma [10] we prove that: for any prior belief Ag € PB, and any current posterior

Here we need s < < 5 to guarantee that learning can happen. Without

belief A € R3_, there exists a finite actions sequence b such that ANP7(h]|A) < 75,
Here we use A(hL[A) = (A (0] |A), ABE(HE |A), ABH (] |A)) to denote the posterior belief
obtained by observing history l‘)g conditional on A. In other words, Lemma 10 says, whatever
current belief A the society holds, after observing history hz;, the updated posterior belief
must have its third component strictly below 75 .

Then, conditional on seeing the action sequence h%, posterior beliefs (A \BL \BH)
must converge to (0,0,0) with strictly positive probability. Otherwise, posterior beliefs
(AMNBLXBH) must converge to confounded learning point (0,0, 7%;;) with probability 1.
However, this means the expectation of the limit of AP# is 7%, which is bigger than the

limit of the expectation of AP, which is NP7 (h{ |A) since AP is a martingale. But this
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violates Fatou’s lemma which states that the limit of expectations must be no less than
the expectation of the limit. Finally, since h% is finite, it happens with strictly positive
probability. Therefore, we can conclude that complete learning must arise with strictly

positive probability. Below is the formal proof.

Lemma 10 Given any prior belief Ay € PB, for all current belief A € R3 ., there exists a

finite sequence of actions F)Z) such that
ABH(hz;‘A) < 7.‘—*BHa

where (0,0, 75y) is the unique confounded learning point.

Proof. Starting from any current belief A, if A% > 7% we construct following action

sequence

o7 — a; if M < 7hys

I'=
b; if Ay > mhy.
o )\BH+>\BL . . . .
Here \;, = Soaris a random variable defined for any posterior belief A;. It represents the
t
likelihood ratio for payoff state being B over A under A;.
- . BH\ . . ¢(b|BH\ . )

It is directly to verify that % < 1ift Ay < 7 W < 1iff \; > 7hy; and
that Z((Zlﬁlzi‘z)) = ﬁ%ﬁfi‘g = 1iff \; = m5y. In other words, if A, < 7jy, then observing

action a reduces \PH; if \; > 7%, then observing action b reduces \BH.

, ABH must decreases.

Therefore, conditional on observing any action in the sequence h7
If there exists infinitely many decreases which are bounded away from 0, then A must
eventually decreases below 75,. This is equivalent to show that: 3¢ > 0 and and a sub-
sequence ti, such that )\, is ¢ away from 75y. This is further equivalent to show that:
conditional on observing h7, \; cannot converge to ;. We shall show such convergence is
impossible.

To show this, we need the following observation: if Ay € {A; € R |\, € [Ag, ]}, then

conditional on observing action a, A must decrease. It is direct to verify that

¢(a|BH7At) <1 ¢(a|BL7At) <1 ¢<G|AHa At)

A € Dol = Srran a) S Y GalAL Ay ¥ G(a|AL Ay

> 1. (12)
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This observation follows from that:

BH ¢(a|BH,A+) BL¢> ¢(a|BL,A¢)
U ¢(alAL,A¢) i +/\ ¢(a|AL,A¢) \l/

AH ¢(a|AH,A¢)
1+)\ a|ALAz T

Air1(alAy) = < A, (13)

as long as A, e R3 .

This observation has the following implication: if at period ¢, Af < 75y, then \; has to
first move away from 75 ,. It cannot move close to 75, until it drops below \g. Therefore,
if \y = 75y, it must eventually approach 7}, from above.

Since \; > mjy eventually, there exists a finite ¢ such that A\, > 7}y for all ¢ > .

Then by construction of h”, from period ¢, only action b is observable. It is direct to that
¢(b| BL,A+)
¢(b|AL,A¢)

that AL — 400 implies that A — co. But we can verify that: observing action b while

A\t > Ty must reduce A, So MM is bounded above by A7, m

Conditional on observing b, if (A, APE APH)

> 1 always hold. So AP must increase to +o0o. With assumption that A\, — 75,

converges to the confounded learning

point (0,0, 75,) with probability 1, then
R = B[ lm AP AL NPH(67|A)] > X(5T[A) = lim EDPH AL APH (00 |A)). (10

Here the first equation follows from the assumption that posterior belief converges to con-
founded learning point with probability 1; the second equation follows from the fact that
ABH is a martingale conditional on AL and h% But this violates Fatou’s lemma. There-
fore, conditional on hz;, complete learning must arise with strictly positive probability. We
also note that the probability of observing action sequence f)z) is strictly positive since this

sequence is finite. So we have the following result:

Theorem 11 In an observational learning model with unknown proportion of naive players,
given any prior Ng € PB, for all possible current belief A € R++; complete learning arise

with strictly positive probability.

6 Confounded Learning could be Globally Stable

In the previous section, we show that complete learning shall arise with strictly positive
probability for all priors (\J'#, \PL \BH) € PB. In this section, we drive sufficient conditions

for a similar result holds for confounded learning.
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The first result we have is that confounded learning is “locally stable”: if the society’s
posterior belief A; is sufficiently close to the confounded learning, with positive probability
posterior beliefs settle down to the confounded learning. This result is obtained as a corollary
of Theorem C.2 in |Smith and Sgrensen| (2000). Below we give a rigorous statement.

A rigorous definition for a stationary point of a stochastic process to be locally stable is

given as following:

Definition 12 (Local Stable Stationary Point) Let (2, P, F;) be a generic filtered prob-
ability space, and {A;} : N x Q@ — R"™ be an adapted discrete-time stochastic process. Then a
stationary point A* € R™ s locally stable if there exists open neighborhood U > AN* such that

P({ lim Ay(w)=A"|Ay, € U}) > 0.

t—+o00

Theorem 13 Assume there exists (0,0,75y) satisfying equation so that confounded

¢(a| BH,A+) \BH
d(alALA) t

around (0,0, 75 y) for a € {a,b}, then (0,0, 75,) is locally stable.

learning exists. If belief updating rule p(a, \PH) = \BH weakly increases in

Proof. See Appendix[C| m

To strengthen the local stability of confounded learning into global stability, we need
to show: whatever society’s current belief is, society’s posterior belief moves into the local
neighborhood U with positive probability. In the rest of this section, we are going to show
something slightly stronger. For any given current belief A € R, and any ¢ > 0, we
construct a finite sequence of actions htoo. Conditional on current belief A and observing
actions sequence hg, society’s posterior belief moves into the pre-determined e-neighborhood
of confounded learning A*. Since any finite sequence of actions happens with strictly positive
probability, we can obtain the global stability of confounded learning from the existence of
9.

The [’Jg is constructed in two phases. We first construct an infinite action sequence h
that can push society’s belief arbitrarily close to axis A2, In other words, in the end of first
phase, society’s posterior belief A must satisfy that A7 and A\BL are sufficiently close to
0. By doing so, we roughly turn the global stability problem of a three-dimension problem
into a one-dimension problem. Then, in the second phase, we construct an action sequence
consists of action b to push society’s belief into the pre-determined —neighborhood along
the direction of axis-A\B#.

Intuitively, construction in phase I is done in the following way |7_r] : given any current

4See appendix @ especially lemma for a rigorous version.
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AH BL
belief A; € Ri +, select the action that reduces i‘;ﬁ + i‘fTH For a generic A;, we can always
t t

)\AH )\BL
reduce {5z + {hr for that
t t

M) APHa)y  AMOAPE o(IBH A ((NM0) APR(B) AT AP
Sy Mm@y ~ G 3pm) = IR A <(A5H<b>’ sy~ G A?H))

. )\AH ABL .
By doing so, )\g*H + /\}TH form a decreasing sequence and are bounded from below, and hence
)\A ABL
must converge. We conjecture that for a generic set of learning primitives, /\BH + 3 PV 0.

Let us rewrite society’s belief Pt = (ptAH ,pPL pBHY in probabilities 1nstead of ratlos. It is

. )\AH by L
direct to see that Sy v d ﬁtBH pBH Now, let us assume that pt s + 2 — ¢ >0, then
t t t t

t
AH

P, must converges to a limit set P, which lives on the plane determmed by ZB—H—i-;';;,L{ =c.
We conjecture such a limit set P4 cannot exist for a generic set of learning primitives.
To see the intuition of this conjecture, let us assume that Pysier = {Ps,, Ps, }, then we must

have coordinates of P, satisfying following equations system:

PS1(C“1) = PSQ;
Py, (ag) = Py,;

AH BL AH BL
ps1 +p81 _ p82 +p82 =c
BH BH =~ 7 ,BH BH =~
D5, DPs, D5, DPs,

Here the first row represents three equations that there must exist an action «; such that
society’s belief moves from p,, to ps, conditional on seeing «;; the second row represents
another three equations that there must exist an action as such that society’s belief moves
from ps, to ps, conditional on seeing aw; the two equations in the third row follows the
Therefore, if the cardinality of P.,ser is 2, then the

six coordinates in Pcluster must solve eight equations. This seems to be impossible under

a generic set of learning primitives. This intuition Works if || Pauster|| > 2. In fact, the
cardinality of P.,ser cannot be 1 with assumption that Z BT + ZL{ =c. To move from an
intuitive conjecture to a rigorous statement We need condltlon 1 in theorem [14] In other
words, if condition 1 is satisfied, then —|— H — 0 must hold. Interest readers can refer to
lemma [20]in appendix [D] for a detalled proof. From intuition described above and numerical

experiments we performed, we believe that condition 1 holds for a generic set of learning

SIf || Pepuster]] = 1, then the posterior belief in ratios A, corresponding to ps € Pejyster must satisfy
A, € {0, —|—oo} {0,400} x {0, 75, +00}. We could verify that no such A, can be stationary and satisfy

AH

BH+ BH_C>0
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primitives.

The ultimate goal of construction in phase I is to push society’s belief sufficiently close
ABH

AH BL
, which is a stronger statement than ;\fB = + ;\jTH — 0. After all, the ratio goes
AAH'AFL ABH
t

to axis

to 0 could happen if are large, but increases fast enough. If this is the case,

At = %’\51 — +00. We can actually compute the long run frequency of each action if
At — 400 in a sub-sequence t;. (See lemma 27| in appendix @ for a detailed computation.)
Such long run frequencies imply that A\# — 0 and AP# — 0 if and only if condition 2 in
theorem [14] holds.

Therefore, with condition 1 and 2, we can push society’s belief arbitrarily close to axis
ABH  Depending on the € in the pre-determined e —neighborhood, we can determine a proper
period to stop pushing the belief closer. And the construction in phase I is complete.

Let us denote the society’s belief at the end of phase I as A;. As long as A\AH \BE

are negligible comparing to A2, to push the belief towards A*, we just need to push A\Z#

towards 75y. This can be done by action b for that %jff;\\; < 1if A > 7y and that
% >1if A < 7py. ﬁ With condition 4 in theorem |1 , ABH can not jump across ;-
Therefore, we could use a long sequence of action b to push society’s belief from A; into the
pre-determined e—neighborhood, provided that 2 /\BH + /\BH stays close to 0.

The only thing needs to worry in phase II is that /\]TZ may increases too much, which
implies that AP’ is no longer negligible, comparing to A?#. [| In general, we can control
the ratio of /’\\Biz in phase II by shrinking it really small in phase I. However, shrinking ;\,%
doesn’t solve the problem if AP#(S"|A) — +oo. If this is the case, then shrinking 2s in
phase I comes at the cost of AP explodes, and a super long sequence of actions b to push
ABH close to 7y in phase IL. It is not clear that ;\,% stays negligible after seeing a super
long sequence of actions b, even if it starts with a super small value. In proposition |35 we
deal with this situation. With condition 3 in theorem [I4] we can always push the society’s

ABH is bounded above while /’\\BL}LI is arbitrarily small. In Figure

belief into a position where
Bl an example of beliefs’” movement in phase II is depicted.

The set of learning primitives that satisfy condition 2 and 3 in theorem are open.
Furthermore, from numerical examples, we conjecture that condition 3 actually holds for all
learning primitives. Therefore, we believe that global stability of confounded learning is a
robust phenomenon which arises under sufficiently many learning environments.

To summarize, we have the following theorem:

ABHLABL __ \BH NAH \BL . .
ON = 2 = AP f S + 257 is sufficiently small.

"We don’t need to worry about MH gince ,\2H always decreases conditional on observing action b.
Therefore, as long as A is negligible to AB¥ in the beginning of phase II, it must stay negligible.
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Figure 3: Belief movements in phase 2

Theorem 14 If prior Ay € PB, then for any current belief Ay € R3 | and e > 0. If

blAH @ b|BL,x)—¢(b|BH,x
1. 3(x)i((bl\BL,$)) < 3((?/'), ’w?ere S(x) = iébIlBH,:v))—i((b‘lAH,x)) onz € [xpp,1]
z¢p(b|BH,x

1_2)¢(b|AL,z) + o (b|BH,z)

andy:(

2 log ¢(a|AH,1)—log ¢(a|BL,1) log ¢(a|AH,1)—log ¢(a|AL,1) ,
* log ¢(b|BL,1)—log ¢(b|AH,1) log ¢(b|AL,1)—log ¢(b|AH,1)’

3 10g¢(QIAL71)_10g¢(a‘BL71) lOg(ﬁ(d'BH,l)—lOg¢(G|AL,1) .
" Tog ¢(b|BL,1)—log ¢(b|AL,z) log (b|AL,1)—log $(b| BH, 1)’

)\BH
b\ BH, s3r7)

o(
4' )\BH \BH

strictly increases in N\BH
SIAL )

then there exists a finite sequence of actions f)tco, such that
C *
e (BEIA) — A" < .

In other words, starting from Ay, after seeing hg, the society’s posterior belief enters the

e—neighborhood of confounded learning.

Furthermore, by local stability of confounded learning A*, 3 9 > 0, such that
[ Aty (b5, | Ae) — A < g9 = klim Atiigrx = N° with positive probability.
—+00

So N* is globally stable under above conditions.

Proof. See Appendix[D] m

24



7 Conclusion

We study the effect of naive players on long run learning in an observational learning model.
Because naive players act exclusively on their own signals, their actions keep generating
new information. We argue that if the proportion of naive players is unknown and rational
players need to simultaneously learn the true proportion and the payoff-relevant state, then
confounded learning could arise. We further show that complete learning is globally stable:
for a large set of priors, starting from any current belief, society’s belief settles down to
complete learning with positive probability. We also give sufficient conditions that guarantee

confounded learning to be globally stable.

A Proof of Lemma 4

We first compute the evolution rule of \;**?. Conditional on seeing action o € {a, b}, we

have

;Pt(wlwﬂhb@) _ Pi1(wiwa|hy) ¢(afwiws, A¢(he))
- Py(AL|hy, ) Piy(AL|Ry)  ¢(a] AL, Ay(hy))

P(awiws, Ay(he))
d(a| AL, Ay(hy))

N2 (e, @)

= N2 (hy)

(15)
Using evolution rule [I5], we have

ENITIAL, b
AT (hey a)p(al ALy Ay(hy)) + AT (he, D)G(BJAL, Aq(he))

d(alwiws, Ay(hy)) ores e D(blwrws, Ag(hy))
Sl AL, Ay (hy) Jé(al AL, Ay(he)) + [N (he) SOIAL M) [(b| AL, Ay(hy))

= A“e2(p,). (16)

(A2 ()

It is obvious that A\;**“? is non-negative since it is a likelihood ratio. This completes the

proof.

B Rigorous Statements and Proofs of Section [5.1

In this section, we rigorously solve the simplified SS model in [5.1]

We first solve the unique sequential equilibrium.

Lemma 15 Assume equilibrium strategies o4, ...,0:_1 have been constructed. The induced
probability distribution on {A, B} x {a,b}!™! is denoted as P;_1. For history h; € {a,b}!™!,
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denote

P, _1(B|hy)
Py _1(Alhy)

Then the equilibrium strategy of player t is given by following cutoff rules:

Me(hy) =

St 2 5 + , if player t is Match type;
Oy = a <

s < /\jr , if player t is Mis-match type.

The proof of the above lemma is essentially the same as that of lemma

The following result describes the belief updating rule along the equilibrium path.

Lemma 16 Along the equilibrium path, we have

B B ¢(al, B) ,
A1 (hes @) = o(Ai(he), @) = /\t(ht)mava € {a,b};
where \ \
Baldw) = pl1l = F ()] + (1= R (),
and \ \

(0|, w) = pF*(——) + (1 = p)[1 — F*(

Atu )
The following proposition is a restatement of Theorem 2(g) in Smith and Sgrensen (2000).

A+v

It describes a sufficient condition for confounded learning to arise.

Proposition 17 If lim,_,;- f(s) and lim,_,+ f2(s) are both finite positive numbers, then

p 1-p
}

min{1 , —— ,;p} implies that there exists a mon-empty set

v p
< — < ma
U X{l—

K C (0,+00) such that VA* € K, we have
o(a|X*, B) = ¢p(al\", A), Vo € {a,b}.

Proof. Let €(\) = ¢(a|\, B) — ¢(al\, A) for all A € (0,4+00). We have

A U

A
)\—l—u)] (A +u)?

A+v

A v
A+v)](A+v)2'

¢\ = plf () = f( + A =p)fP (=) = FU

)\—i—u
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By definition ;;% = 1% vz € (0,1), so we have

xT

Alir(l)qu@'()\)

, B, A A u B, A A v
=l lpf (A+u>(5_1)(>\+u)2+( —p) (A+v)(1_5)(>\+v)2]
= (D)t (). (17)

and

Al—i>r—|-noo/\2€/(/\)
= dim A1 - (- A m )
T s PN AT (A +u)? PINT 0N (A +v)?
= [up—v(1 = p)] lim f4(s). (18)

By assumption lim, o+ fZ(s) > 0 and lim,_ ;- f4(s) > 0, so

1-— v
p>>p

D u l—p

1—

& Up—§>0andup—v(1—p)<0

& lim &(\) >0and lim M@ ()\) < 0. (19)
A0t A—+00

Since limy_ o+ E(A\) = limy_, 4o E(A) = 0, condition [19]is equivalent to that there exists open
intervals (0, €) and (m, +o00) such that

E(A) > 0,VA € (0,¢) and E(N\) < 0,VA € (m, +00).

Therefore, condition (19| implies that IA* € [¢,m] such that E(\*) = 0. Similarly, we have

LZP P P i @(0) <0and lim A2E(N) >0, (20)

v
P u 1—p A0+ A—+o0

which implies IA*(0, 400) such that E(A\*) =0. =
The following theorem rigorously describes the conditions under which complete learning

never arise.

Theorem 18 If \g > inf{ K}, and belief updating rule p(X\, ) monotonically increases for

27



a € {a,b}, then Yh € {a,b}", we have

lim A (h) # 0.

t——+00

Proof. That Ay > inf{K} implies that IN\* € K such that Ay > \*. By the definition of
confounded learning point A*, p(A\*,a) = \* for a € {a,b}. Since ¢(A, a) monotonically

increases for « € {a, b}, we have
(A, @) > (N, a) = X Va € {a, b},

provided that \; > A\*. Given Ay > \*, inductively we have \; > \*, Vi. =

C Proof of Theorem [13

For reader’s convenience, we first rewrite Theorem C.2 of Smith and Sgrensen| (2000) in our

notations.

Theorem 19 Let (o, A;)) be a discrete-time Markov Process on {a,b} x R®, with transi-
tions

A1 = o(ay, Ay), with prob ¢(oy| AL, Ay).
Let A* be a fized point of p(a,-). If
1. ¢(a|AL, N*) is continuous at A*, and p(a,-) is C' at A*;
2. Dyp(a, A*) has distinct, real, positive, non-unit eigenvalue;
3. ¢(a|AL, A*)Dyp(a, A*) + ¢(b|AL, A*) Dyp(b,A*) = 1.
Then, A* is locally stable.

It is straightforward to verify that ¢(a|AL,A*) is continuous and that ¢(a,-) is Ct at A*.

We further compute

¢(a|AH,A*)
SaIAL ") 0 0
. a| BL,A*
Dagp(a, A7) = 0 Sz 0
s 2 s s
_<7rBfII‘{f‘1> G (WBIf-Iil)QGl L+ (71'}31:{3-i}j-[1)2 Gy
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¢(b|AH,A*) 0 0

B(b|AL,A*)
*\ ¢(b|BL,A*
Db@(bw/\ ) - O Eb||ALA*; O
—(wgifil)ZQ iz 1t (rr;ffl G2
where o .
Q= (1—po)f (ﬂBiﬁ_J (1 —pu)f (WBfIIiJ
LT d(a|AL, A¥) ’
and A m Bl w
G, — _<1 - pL)f (ﬂBi{IH) + ( pH)f (WBfII_{H)
2 — .

¢(b|AL, A¥)
Then it is straightforward to verify that ¢(a|AL, A*)Dyp(a, A*) + ¢(b|AL, A*) Dyp(b,A*) = 1
holds. Furthermore, let

1 0 0
0= 0 1 0
T"BH __T™BH _
('”BH+1) G (WBH+1)2G1 1
TBH $(a|AH, WBH) TBH ¢(a|BL, TBH)
1+(7"BH+1)2 C1=GalaL, TBH) 1 (rpH+1)2 G1—Jrar. TBH)

Then we can verify that Q~'Dyp(a, -)Q = M,, where

wEd o o

w0 s
00 L G

W3 o

w0 s
0 0 1+ (ﬂg;jfl)z GQ._

We observe that G; > 0 and G5 < 0 since gy and that ;igg =
=2 Then it is straightforward that D, o(c, A*), a E {a b} have real, distinct and non-unit

eigenvalues. Finally, with assumption that % > (0, we have 1+ = ”Bi’l)Q Gy > 0. So all

the eigenvalues are positive as well.
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D Omitted Proofs in Global Stability

In this section, we first explicitly construct a action sequence h'. In lemmas and ,

)\BH

we prove that society’s posterior belief can be arbitrarily close to axis conditional

on seeing sufficiently many actions in h¢'. In lemmas and , we prove that society’s

belief, starting from a position sufficiently close to axis A®# and is bounded above by a
S
—s

confounded learning after observing a long sequence of action b. In proposition |35 we show

finite number A < , can eventually enter any pre-determined —neighborhood of
that we can always push society’s belief into a position sufficiently close to axis—A?# and is
bounded above by a proper 3T A ot of computation results are used in the proofs. To not
to disrupt the logic of proofs, we verify these computation results in the end of this section,
from claim B6l to claim @41l

We arbitrarily choose and fix a current belief A € R? . and a ¢ > 0 in this section. We
use A(h|A1) to represent the posterior belief updated from A; after seeing history h.

AH BL
At period t, action f)tC ! is chosen to reduce the ratio ;\jTH + ;\}TH We observe that
t t

NI (GlalAH,A) N\ APE(#lalBLA)
v oy ) 3o Gty )

(b BH, A,) (A;“H (qb(blAPL A) 1) A (¢(b|BL7At) _ 1)) (21)

~ ¢(a|BH, A) \ NPT\ G(b|BH, A,) )" AP\ $(b| BH, Ay)

. . . (AAH Z\BL . . .
Therefore, if we consider the pair (/\ETH’ /\étTH)’ after seeing an action, it can only moves toward
. . . . . )\AH )\BL
two opposite directions. Therefore, generically we can choose an action to reduce A:B 7 )\:B -

Following this observation, h is constructed in following way: at period ¢, if there
Ndi(a) + a1C) < A + AP then h1 = a; otherwise
/\th{(oc) qu(a) )‘tBH AF}“ Lt ’
MO A) | AP0 IA)
APHE(611A) AP (b1 |A)
sequence bounded from below by 0. The following lemma shows that it must converge to 0

with condition 22

exists an action « € {a, b} such that

choose action a. From the construction, obviously form a decreasing

Lemma 20 Let tpy = —E2_. For all z € [xpy, 1], let F(x) = ‘b((b‘BL"”)*d’(b'BH’x) f

P #(b|BH,z)—¢(b|AH,z) "
¢(b|AH, x) -~ x¢(b|BH, x)
S S@IBL,2) < SWh Y = T g0[AL ) + BB 2) 22

8In this section, most of the times, we don’t explicitly distinguish bounded private signal and unbounded
private signal. If private signal is unbounded, we understand that % == 400
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then there exists an infinite sequence h' such that

AMOEIA) | APE(BEA)

im =0,
=0 AP (D A) - APH (B |A)

where A is the arbitrarily chosen current belief at the beginning of this section.

For notation convenience, from now on in the proof of lemma 7 we drop h' with the
understanding that A, is actually A(h*|A). For example, when we write A, we mean a

number A\*# (51 |A), rather than a random variable.

. )\AH ABL .
Proof of lemma . Since pr + hE form a decreasing sequence bounded from below,
t t

it converges for sure. Let’s assume it converges to a positive constant c. Following sequence

of claims lead to a contradiction.

Recall that z; = ) Z,\EiE\EBL\BH, following two claims and says that eventually z;
t t t

must stay strictly above xg.

Claim 21 7 infinite sub-sequence t, such that Ty, — Tg.

AH BL
Proof. Assume the opposite. By the construction, we have ;tBH + i}TH monotonically
t t

decreases and is bounded from below, so

R
et g, g S

_ lim [/\QH¢(O‘%’AH7$%)_¢(Oétk’BH7xtk) AECL (b(atk‘BL?xtk)_¢(O‘tk’BH7xtk)}
t——o00 )\iH QS(CYtk’BH,fEtk) )\ECH gb(atk|BH,xtk)

= 0.

(o, |AH ) )~ (o, |BH,xe) ) - )
é(ar, |BH 1) is strictly

(aty |BLxt, ) —¢(a, |BH,xe, ) N
o(at, |BH,xt, )

Fact (verified in the end of this section) says that

bounded away from 0. The assumption that x;, — ¢ implies that ¢

A\AH . . NAH  )\BL
0. Therefore, we must have ,\ch — 0. Furthermore, since we assume lim;_. 5m+5kr = G
te t t

ABL
we must also have BT — C
k
To summarize, with assumption that

)\?H )\BL

\BH T )\tlﬁ — ¢; and 3y, s.t. Ty, — To; (23)
t t

31



we must have

/\AH )\BL

N N — (24)
\BH " \BH C; Ty, —2 Lo

t ti

This implies the limit position of A;, must be

AAH . \BL %o . \BH 0 . 25
w TN T Aol —a0) % (1 + (1 —0) (25)

Now we prove that A; cannot converge to above limit. For a sufficiently large ¢, let us

consider the action hg: at period t;. If hgj = a, then z;, 1, must be sufficiently close to

2o[1—F" (z0)] — C - ¢(b|BL,)
T FP o) T (e [FA )] = Ll <AI§UO. Th;jl B Iil;lst beBlZ since Zppmy < 1 when
A A A A _
xr < xg. However, we must have [ )\?%z + A%j} — [ Azf%i + Agﬂ be sufficiently close to
k k k k
S(alBLag) POIBLE )—60BHaE ) . . .
CotalBH z0) OB 1y which is strictly bounded below from 0. This contradicts

)\AH )\BL
that $pm + {Hm must converge.
t t

.. . . FB
Similarly, if btc;l = b, then =z, 41 must be sufficiently close to onB(m:)O—&-(l(—rmoo))FA(mo) =
)\AH
b .y > xo. Then hi'  must be a since % < 1 when z > 9. We also have |[T#r +

t+2

AtBkLJrQ} - [Agﬁl + Aiﬁl] must be sufficiently close to ¢2UBLz0) $(alBLat 1) —¢(al BHE, 1)
N T T TN, o(o|BH,z0) SlalBH e}, 1)

which is also strictly bounded below 0. m

Claim 22 7 infinite sub-sequence t, such that Ty, < Zo.

Proof. Assume the opposite.

It is direct to verify that % < 1 and % < 1lif x < zy. So
0 = lim [A?ﬁl + AE“L“] - [AQH /\ECL]
koo FALEL AR At AR
C [AQH o(b|AH, x;,) — ¢(b|BH, x4, N MY o(b|BL, 2,,) — 6(b|BH, xtk)]
tp—+o00 )\iH ¢(b|BH, l’tk) /\ch ¢(b|BH, :Etk)
)\AH .
te—+oo " A ¢(b|BH, x,)
Use fact [38], we have again
/\fltH ACE
B — 0; VL — C.
k k
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Then

AZL}CH ¢(b|AH7 xtk) — ¢<b|BH7 thk) AiL ¢(b|BL7 xtk) B (b(blBHv xtk)

1

oo [)\f;H o(b|BH, xy,) AP ¢(D|BH, xy,) )
. [/\iL ¢(b|BL,xtk)—¢(b|BH,xtk)] 0

v LA o0\ BH, )

implies that x;, — 9. Then we can just cite Claim [21] =

There is a one-to-one map between A; and P, = (p*H, pPE pBH) which is the society’s

posterior belief represented by probabilities rather than ratios. We can verify that /A\i*i +
t

APE et Pt 3
xpm =y g Vi € R

A
The following claims describes the limit of P, under the assumption that iéTZ + ;\\%{ — c.

The limit of P, must converges to a set P.user. Starting from each limit point P;, there
exists one action a. Upon seeing this action «, society’s belief update from P; to another

limit belief in P, ster-

Claim 23 3P yster = {Ps}ser satisfying

1. Each Py, € Puuster 15 a cluster point. In other words, 3 sub-sequence tj such that

llmtz_mO Pti = Ps'

AH BL
2. For each P, = (p2,pBL pBH) we have izBH + ;DSBH =c, and x5 > To.

3. For each Py, 3 at least one action o € {a,b} such that Ps(c) € Payster-

Proof. The existence of cluster set P.,ser following from the fact that an infinite se-

quence in a compact space must have convergent sub-sequence. The sequence of probabilities

(pAH pBL pBH) lives in a compact simplex

A = {(p* pPE pPHj0 < pHH pPl pPH < 1,0 < pH 4 pPE 4 pPH < 1},

The existence of a set of cluster points follows directly.
A
By the fact that p, is a cluster point and the assumption that Z tBZ + ;’gi; — ¢, we have
t t

pitt | pBL . . BH )
oo+ oEm = C. This ratio is always well-defined for the reason that pJ** can’t be 0. From

A
the fact that %—Z + % forms a non-increasing sequence, if p?# = 0, then p2# = pBL = 0.
Furthermore, because of claim , P, =(0,0,0) is impossible. That =4 > z follows directly
from claims 21 and 22
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For a cluster point Py and corresponding sub-sequence F:, divide the sub-sequence fur-

ther into two sub-sequences P« and Pps.s. Here at a particular belief P if by the construc-
k

tion, action oy = a, then it is classified into Ptzya. Here at least one sub-sequence of Pt;"‘

and P,» must be infinite. Without loss of generality, assume that Pyea is infinite. Then
k

Pizay1 = P(a).

By definition, P;(a) is a cluster point. m
Following two claims says that, under condition [22} at a limit belief P, upon observing
an action b, society’s belief must no longer lives in the limit set P.,ser-. In other words,

under condition from some period on, bf ! must solely consists of actions a.

Claim 24 For each P, € P,yster, we have

p?H ¢(b|BL7‘Ts) — ¢(b|BH7 xs)

P~ 0IBH 2.~ o AH z, 20
Proof. By the fact that Ja € {a, b} such that Ps(«) € Puyster, we have
p p?t _pit ¢(e]AH, x,) | pPt ¢(o| BL, x,)
pft  p2 pP ¢(e|BH, x,)  plt ¢(a|BH, x)’
which is equivalent to
p[é(a| BH, ;) — ¢(alAH, 2,)] = p/*[¢(a| BL, x,) — ¢(a| BH, z,)]. (27)

Following claimP1]and claim[22] z; > y. We can verify that ¢(a| BH, z,)—¢(a|AH, x,) #
0 and that ¢(a|BL,z,) — ¢(a|BH,z,) # 0. Lastly, that pPL = 0 implies p = 0, so

pAH  pBL ' : i i to obtain [

Claim 25 If condition in lemma|2() is satisfied, then for all Py € Pysier, Ps(b) € Pauster

Proof. Assume the opposite that Py(b) € P.yster- Use the descripition , we have

SblAH, z;) N 6(O|AH, x,) _ ¢(b|BL,xs(b) — (b| BH, z4(b))

S S OBL,z,) ~ AL G(b|BLxy) o8| BH, 2.(b)) — oo AH, (b))

= §((b)). (28)

If 3 € (z9,2pH), following the same reasoning as in formula E, we have z4(b) > ;.

By fact E ¢(1;\‘21ng) < 1if x5 € (xg,xpg). Therefore, if zs € (xg,rpy), we must have
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§(xs(b)) > F(zs) > §(x )%, which contradicts equation . So, if zs € (xo,xBH),
then Py(b) ¢ Peuster-

If 25 € [xpy, 1], then by claim |36| and claim m, we must have §(zs(b)) > §(y(zs)) where

y(zs) = = zs)¢(bﬁi@5fﬁs¢z(b|31{ -7~ Then equation 28 contradicts the sufficient condition in

lemma 20 =
The following claim brings the contradiction: if h consists of all action a from some

period on, then no element in P, can actually be a limit point.

Claim 26 If for all Py € Puyster, Ps(b) & Puuster- Then no Py can be a limit point.

Proof. For a cluster point Ps and a F; which is sufficiently close to Ps, by claim , Qs
must be a.
If gﬁ;i > 0, then

pifty v ¢lalAH, zy)  pAH
pity  pE" olalBH,xy) ~ pBY

Similarly, P 41 is sufficiently close to a different cluster point Pi(a), s +1 must be a as

AH
Pisio .
well. So =4~ must be even bigger.
ts+2
k

Following this logic, P; can never return within a neighborhood of P,. This contradicts

that P; is a cluster point
If psBH = 0, then p;f;-,,H = ¢ > 0. By claims and , xs must be strictly bigger than z.

M < 1. Therefore,

It is dlrect to verify that (@l BH )

pgﬁA ng ¢(a|BL, l"t;:) pBr

pifty  pE" ¢la|BH, ) ~ pPH

So 5};;; can never return to c¢. This implies that P, can never return within a neighborhood
t
of P; again. m m
AN APE ) : o« \BH
Merely {57 + {hw — 0 doesn’t guarantee that A, is eventually close to the axis A®7.
t t
The ratio could decrease to 0 just because that APH increases much faster than A\ and

ABL. We need to rule out this possibility.

Lemma 27 If

(1) AP (5 [A) = +o0;

or

(2) private signal is bounded (5 < 1), \BE(5S1|A) doesn’t approach +oco, but It such that
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APH(DEA) > 5= for all t > 1.
Then 3 sequence Ty, € N, such that

L e
Aevree (Ti)? log 335z + 108 Sy

lim 0 = log 5t . (29)
Bive (T log ) + Los S

Here #a counts the number of actions a € {a,b} from period Ty, to period Ty, + (Ty)?>.

Proof. If (1) holds, then z,(h{*|A) — 1. If (2) holds, then ;, > —7 E — for all t > t.

1+A:BH+AZBH+1;S
Thus, liminf; ,, . z; > 5. In both cases, Vk € N, there exists T} such that z; € (5 — %, 1] for
all t > T} — 1.

We can verify that in phase I,

A
“ - ﬁ > F(2y). (30)

Here §(-) is the same function as defined in lemma [20]
We have following claim: Vk € N, 3T}, > T} such that

NAH 1.¢(b|BH, s a|BH, st
tBL c [%v(g_ _)¢( | bk))g(]_)qb( | fa)] (31)
At k™ ¢(b|AL, s2,) ¢(alAL, s3*)

where 58, = Argming, ¢ (s 1 %, and s;¢ = Argmax,es 1 ] %. For notation

convenience, from now to the end of this proor, we shall just write [Ib, ub] for the closed
interval in 311
In this paragraph we prove the above claim. Let t; = min{t > T,H’ZAT}LI > §(z¢)}. Then
t1 < 400. Otherwise, i‘\%{, < §(xy) for all t > T, kl By construction rule , we must have
9 — ¢ for all t > T!. Then

\AH A?f] i ¢(a|BH, x;)

log =L —1 ko — E 1 P

o8 A\BE 8 )\iﬂl — o8 ¢(alAL, z;)
1=T%

By claim , log % is bounded above 0. Therefore, ’/\\fTIZ — +o00 as t — +o00. However,
sbg t

this contradicts ?\?TIZ < F(z) for all ¢ > T} since F(x;) < F(1) < 4+o00. (Recall F(-) strictly
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increases). Then we must have

)\QH - )\2?—11 P(alAH, x4 _)
)‘gL B /\551 ¢(Q|AL7 13t1—1)
alAH, xy,
S S(xtlfl)Qb( | t 1)

(b(a]AL, SL’tlfl)
¢(a|AH, 53"

= UG

(32)

Here the first equation and the first inequality follow from the definition of ¢;. The second
inequality follows from that z;, | € (5 — %, 1] and that §(-) strictly increases. Furthermore,

we have

)\éH )‘ﬁH ¢(b|AH7 It1)

AP ABL 4(b|BL, x,)

_ ]_ ¢(b|AH,[Et1)

> _ Ay )

> 36 k:)qﬁ(b|BL,xtl)
1. 6(b|AH, sb,)

> — ) Tk

Z 36 P SIBL. %) o
S(b|AH 1)

Here the first inequality follows from that SOBLa) < 1 (see claim. The second inequality
7Tty

follows the definition of ¢; and that § strictly increases. The third inequality follows from the
H

A

definition of s%,. Combine inequalities 32 and E’ we have i\\tﬁ € [lb,ub]. Let T, =t;. We
31

AH
)\AH At+1

have the following inductive argument: for all t > T}, if {5 € [Ib, ub, then 57 € [Ib, ubl.
t t+1

The inductive argument can be proved as following: there are two cases:

AAH A \AH g(a|BH 1) é(a|BH,s%%)
1. Spr < @, then 35t = 5oz gamra) < S gamarsn

ANH AR MM G(b|BH ) — 1\ ¢(b|BH,s,)
2. NPT~ Tt then APL T NPT 6(b[ALay) >3(s k)eb(b\AL,ss:k)'

So claim [31] is proved.

Furthermore, we have

AH
Mivmyr _ My i Sl BH 7)) [lb, ub]; (34)
ML e ABETET g(au|AL )

SO

Ty +(Ty )2 -1 ¢(O{Z|BH, xl) b ub

W S ailAL) < o o (35)
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We can make left-hand side of [35] slightly bigger and obtain

2
(CLalBH. ) oy S(IBH. si1), it W (36)
al|AL, s3 b|AL, st® —ub’
¢(alAL, s}7) P(b| AL, s}
We can make left-hand side of [35] slightly smaller and obtain
(Tx)?
( (G‘BH, S*k))( Tp)? ( (b’BH7 S*k))( kl; < u_b (37)
o(alAL, s%.) B(b|AL, s,) b

Now taking logarithm on both sides of [36] and 37, and let & — +o00, Ty — +00, we have

Mo lalA,) o GBlAH,D)
lim sup log + (1 — limsup log ————=) < 0; 38
s e 8 gL,y T r) 8 GGlBLL ) (%)
and
... ffa ¢(G|AH,1) #a ¢(b|AH, 1)
1 f 1 1-1 f log m————"-2-) > 0. 39
lim e 8 garpr (B ) s garpr 1) 2 ()
Combine above two inequalities, we have
$(b|BL,1) $(b| BL,1)
log SOIAH1) > liminf #a > lim sup #a > log SOIAH1)
o8 SEE8E0 +log SR~ MR TP = L T 7 g SR + g SRR
log $OIBL.D)
So limy, 100 (#)2 exists and equals to f, = —5mar f)“"AH Sy W
l0g S(al5L.1) T198 G(elAm.1)

Now we use above lemma to prove that we can always push society’s belief sufficiently

close to axis—AZ in phase 1.

Lemma 28 In addition of sufficient condition [23, if

log 6(alAH, 1) — log d{a| BL, 1) _ log d{al AH, 1) — log é(a| AL, 1
log ¢(b|BL,1) — log ¢(b|AH,1) =~ logp(b|AL,1) —log ¢(b|AH, 1)’

then there exists a sub-sequence tj such that
A= 0, A2 = 0.

Proof. Assume the opposite. Then 3 gy such that [|(AA#, ABE)|| > & for sufficiently large ¢.
Since we assumed sufficient condition , lemma [20[ implies that ;\\ﬁ% + i‘gi; — 0. Therefore
t t
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we must have \P# — +oo. This is equivalent to #; — 1. This satisfies condition (1) in
lemma 271
Let t, = Ty + (T},)? where T} as constructed in lemma . Then

AH _ AH ¢<G|AH,J,’t) ¢(b|AH>$t)
ATir(my2 = ATy [Hat:am“ at:bm}
(a|AH, ) ¢(b|AH, z,)

Te ¢
< M 50 B 20 M= 50/BL, o)

T, ¢(a|AH, 1) ;f;aZ ¢<b|AH,1—l) ;“th (Tk)?
M(a!BL,l))( "Comri-n) ™ (41)

a|AHz) $(blAH.z)
a[BL.2)* ¢(b|BL.)

inequality follows from (1) , € (1—1,1] for ¢ € [Ty, T+ (Tx)?], (2) for big enough k

} is the largest possible increase of M. Here the last
$(b|AH x)

Here ¢ = maxxe[o,l]{z((

> ¢(b|BL,x)
monotonically decreases on (1 — £,1) and (3) for big enough F, iizll‘;f’i)) monotonically
increases on (1 — £,1). Condition [28]is equivalent to that [ﬁ((f‘l"’;ﬁi))}f“ [ﬁ)g'{;ﬁjﬂf” < 1. So

for sufficiently large T}, the big term with the bracket in [41}is strictly below 1 and converges

$(alAH1) T fa T S(b|AH 1) 7 fo
to [qﬁ(a\BL,l)] [¢>(b|BL,1):| . We have

(42)

¢(a|AH’ 1)]fa [¢(6|AH7 1)}fb}(Tk)2.

lim A3 re < lim ¢ {] (b BL, 1)

Ty —00 Ty —00 ¢(G|BL, 1)
So limp, o0 )\%ﬁ(Tk)z = 0. We can similarly prove limg, _,o )‘%LnL(TkP = 0. In fact, if z; — 1,
then

Am AZE e = lim AR e

Recall that in phase II we use a long sequence of action b to push society’s belief from a po-
sition close to axis-A\P# to a e—neighborhood of the confounded learning. As long as in phase
II, M \BL stays negligible, the belief dynamics is similar to the one-dimension belief dy-
namics where A% \BH are zero. In this sense, construction in phase I turns the problem from
three-dimension into (roughly) one-dimension. However, we should notice that the (roughly)
one-dimension dynamics in phase II is still different to a true one-dimension dynamics. We
need to guarantee that A7 \BE A\BEL

stay negligible in entire phase II. To guarantee stays

negligible, we must start phase II with super small A\BL. However, if A\P# (hgl\A) — 400,
then this super small \BX \BH

comes with a cost of a super large , and hence a super long

sequence of actions b to reduce A close to ;. Since observing action b always increases
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ABH Tt is not clear that whether the super small initial A®* can outweigh the super long
sequence of actions b so that AP stays negligible in phase II. We deal with this situation
separately in proposition If in phase I, we can arbitrarily shrink A?! without getting a
super large AB# . Then it is easier to guarantee that ;\\Bi; stays small. After all, fix a learning
environment, a A bounded from above implies that the number of actions b needed in
phase II is also bounded from above. Hence the increase of /’\\Bif, in phase II is also bounded
from above. Therefore, we can always control the largest value of i‘\l,if, in phase II by choosing
a small enough initial value. In lemmas and proposition [34] we deal with this easier
case.

From the next proposition to proposition we all holds the following assumption:

BH

SGIBH ), . 5

NBH 2225 strictly increases in APH on \PH € (2= =),

S(OIAL, 5 7) -8’ 1=
"ABH 41

Assumption 29

|

)\BH /\AH —

This assumption says that the belief updating rule of is strictly increasing if
ABL = (0. Then if AP is above (below) 7%, after seeing an action b, AP (b) cannot jump
to the other side of 75, since 7} is a fixed point of the belief updating rule. The following

lemma generalize this into the case that A%, ABL is negligible.

Lemma 30 For any closed interval [b,b] C (t%,Thy), there exists € > 0 such that

OUIBHA) . (43)

2 7 BH
AE[O,&] X[Q,b]ﬁ)\ (b(b‘AL,A) > Ty

Similarly, for any closed interval [b,b] C (7hy, 75 ), there exists § > 0 such that

GOIBHA) "

A €0,&? x [bb] = ABHW > Tpy

Proof. We only write out the details of the case that A € [0,&]? x [b,b]. We compute the
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(lBHA) ¢ T

Taylor expansion of SOIALN)

= (0,0, \PH) with Lagrange remainder as following:

G(B[BH,A)  ¢(b|BH,K)
S([ALA) ~ H(b|AL,R)
9 ¢(b|BH,A)

ONAH G(b|AL,A) |K A
= (WA 0) | g Saartln | + OMAPE0)H 5 | ABE
9 __¢(b|BH,N) R 0
INBH G(b[ALA) A
AH
—A\BH)NAH 4 \BL 9 ¢(b|BH, x) AH \BL )\BL
(14 A\BH) Oz ¢(b|AL, x) 0

Here A=c(A—AN)+A,0<c<landZ =2

TE [b+17 b+1] - (§7 CCBH)-
With assumption that F4(s), F2(s) are twice continuously differentiable on (s,3) (see

/\BH We can verify that A € [0, €] x [b, 5] and

1+

bBHz)| - : .
assumption (1)), we have that -2 d)((bl' 7 ’”)) |z is continuous in T on [l%b, b+1] Furthermore, for
AH _\BL \BH — ABH 4 \BL A\BH b
all A = (A eAPE NPT we have that & = T Gmasr oo 2 TPTE 2 hrie and that

7 < APH4e b€
< N
U= T3P E = T

(s,xpm). Thus H;; is continuous on A€ [0,&]2x[b, b]. Let M = argmax_

By choosing £ < min{%c_i — 1,7y — b}, we can guarantee that ¥ €

9 ¢(b|BH, z)|
L] 8z ¢(b|AL,z) 1T

E[17+1
and N = argmaxjc g2« 5 Hij, then

¢(b|BH,A)  ¢(b|BH,A) M
o(D|AL,A)  $(b|AL,A) ~— (1+b)?

A

£+ 4NE2

Furthermore, if A € [0, £]? x [b, b], we have

ABHqs(mBH A)
o(b|AL, A)
o OB BH, 57 H<

2
(B[ AL 3 §+4N£)

7 (b‘BH’ b+1) 7 M
me”’((Hw “W)

(1+0)?

! b+1)

which is smaller than 7% for small enough . =

The following lemma says: if society’s current belief A is sufficiently close to axis-AP,

and A\PH is somewhere between s and 7%,;, then a sequence of actions b can push the society’s
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belief into the e—neighborhood.

Lemma 31 With assumption [29, if

Vy > 0,3A7 s.tap, > 29, AT < 7, )\%L <7, )\%H <7y —€/2 (45)
then there exists a vy and ty such that
E *
)\?»f{+to({b}t0|ATwO) )\g'yL-‘rto({b}toL/\TwO) 2 )\?»yfl+to({b}to|AT'yO) € (T‘-BH - 577TBH]

ABH while keeping

In other words, if we can push society’s belief arbitrarily close to axis—
NBH below 7%, then we can always push the society’s belief to a proper position, from where

to actions b leads society’s belief into the e—neighborhood.

Proof. Intuitively, there are two things to prove: (1) we can use a sequence of action b to

ABH above mhy —/2; (2) M APL stays negligible so that APH can’t move above 7%y

push
due to monotonicity assumption [29}

For each Az , we construct an auxilliary process A as following:

Ap, = Ag,
b|BH :L,down)
)\BH — )\BH ¢( ) = Vt > T -
t+1 (b|AL xdown) ’ ="
)\ S\BL b BL —=down
t+1 — ~t (b( | d >,thT,y,
)‘t+1 AP ¢(b|BH, ")
NAH \NAH
ABH APH ¢(b|BH, 1)
Here zdovn = ATGMAK ¢ (1) 35 —bdown] d)((g"gg’?), gd"“’" = argMil ey o sdown) M{;"ifgﬁ), and

§%wn is a small posmve number defined in claim @41} This auxiliary process is constructed

APE BH BH
with the purpose that /\BH > Tkm and )\t < )\t . In this way, we could use auxiliary
t

values \BL. ABH to control the real values ABL and \BH

We have following claim: Ve&vn € (0, ﬂiz;/fs/?) and ¥d € (0,1), vy > 0 and t; such that

)\AH \BL

Xz Ty +t

BH 0 d . Yo d

)\T’YO > (1—d)1_ )\BH <CEoum )\T o+t >7TBH—€/2, “BH < Eoum (46)
T’yO“l‘tl
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In this paragraph we prove the above claim. First, we can verify that z7. > x¢ implies

that A7 > —vy + ;%2 By (1 — d)7*-} , we can have
AH
)\%H > (1 —d)%2- and /\ﬁH <y < (1 —d)Ee Then /\BH < c%own Second, that Jt,
such that
5L
t
)\Tv +t, > TBH — 6/2; #—H < C%)wn. (47)
Tyytta

This is equivalent to: Jt; such that

¢<b|BH xdown)
(b'AL xdoum)
(¢(b|BL —down)
5‘$WH ¢<b|BH, fdown)

)\BH( ) > Thpy —€/2;

;\BL

t1
) < Ccll?own’

which is further equivalent to

down
log ™ — log A2 T log AB | 1 N 1 = log(mpy —€/2)
(b|BL xdown) T’Y ¢(b|BL,§down) ¢(b|BH7£d0wn) (b|BH xdown)

> 1.(48)
log $(b| BH z0owm) S(b|BH,z%0w) log G(b[AL,zdowm) log S| AL zown)

Since )\BH € (1 —d)y%-, mpy — €/2), as v decreases, the left-hand side of. increases to

(™)

—+00, S0 t1 certainly exists. From here to the end of this proof, let’s choose a (¢ for

2
each c&vn € (0, — £/2 ). For notation convenience, we write 7 for yo(c&v™).
BH

€/2
Intuitively, as APH increases slower than AP A\PH must move above 7, — /2 before

period ¢;. We claim this intuition is true: 3t € {0,1,...,#} such that A\PH > 7% — /2.
In this paragraph, we prove the above claim. Let us use [;, as an abbreviation of index
set {0,1,...,t;}. We first assume that Vt € I;;, A\ < 7%, — /2. Under this assumption,

we have following inductive argument: V¢t € I, — {t1}, if

/\BL )\BL
T+t T,y0 +t down

\BH  © )‘Ty +t > )‘T ot T+t € (w0, g — 6°7"] (49)
Tyy+t T’Yo""t

then
)\BL )\BL
Tyy+t+1 Tyg+t+1 down
2 BH /\T70+t+1 = )‘T o417 DTy +e41 € [0, g — 6°7"] (50)

BH A
)\TW0 i1 Ty +t41
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The proof for the inductive argument is as following:

>‘T,y0+t+1 B /\%L(ﬁ-t ¢(b|BH, T%"") N /\T.m-l—t ¢(b|BH, $T70+t)

51)
74 =g (
i i ] ; : M AR d
Here the inequality follows inductive assumption Agg > /\éfgﬂ’ Tr 4+t € (%o, T — 0%vn]
o Tt 0
and the definition that z%wr = ArgMAX e g 1 gy —§down] %~ The proof for )‘%tht 41 <

AFH i1 is similar. By assumption, A2, < 75y —€/2. From claim 46/ and the definition

>‘B +t+1 )‘EL +t
of ;\B —, we have —1 < sp# L < cfown, Therefore, Ty 41 < g — 6% following claim
Ty +t+1 Tyy+t1
41| Finally, rewrite o7 1441 = L . Then following inductive assumption
Y 'yO+ + 1_;’_ BH
AT, +t+1+ T70+t+1
1'“‘TAY 41

that x4+ € [0, vpr — 0%°%"] and the reasoning in , we have T, 4141 > Tr, 44 SO
T, 41 € [zo, xpH — 5d‘"””] We also verify that inductive assumption holds for ¢t = 0.
Following the inductive proof, we must have )\T iy S )\T o +1,- However, in claim 46| we
have )\T 4, > Tpy — €/2. This contradicts the assumption that AN, < mhy —¢/2 for all
tel,.
Now let ¢y = m1n{t|)\T 4t > Tpy —€/2}. Then )\T 4t S mpy — /2 for all ¢ €
{0,1,...,to — 1}. The above inductive argument still works for t € {0,...,to — 2}. There-

S\¥L +tog—1 >\¥L +tg—1
fore, we have that cfwn > o0l ~ 10707 and that A7 < 75y — /2. Further-
BH T, otto— 1 BH
ATyg+to—1 Trg+tg—1
NAH A? +tg—1 AéH
more, since observing action b always reduces {zm, % < /\5}9 < c%ow”. Therefore,
7o tto Y0

)\T’Yo+t0 1 A$7L+to 1 < Ccéown(ﬂ-*BH - 6/2)
To summarize, up to this point, we have proved that: Vc&*™ e (0, WLi/Q) and Vd €
BH
(0,1), 3 € (O,min{dlf%o,chow"(l —d)7-1}) and to(yo, Ty,) such that

1—xg

Zo

—xo,ﬂ*BH —e/2]. (52)

A vt € [0, ¢ (T — /2)]° x [(1 - d)1—

By choosing d small enough, we have [(1 — d){2%-, 7y —€/2] € (%, 7hy). (Recall 2o > s

is necessary for learning). Following lemma , we can find a ¢%*" small enough such that
)\AH AH
A < mpy- Therefore, AT, € (nhy — /2, my]. Furthermore, we have 7 < T”O <
T70+t0 TA,O
MBL 2B _1 ¢(b|BHx )
doum < down / T’Yo+t0 _ T’Yo+t0 1 $(b|BH, Tyotto—1
So )\T7 1ty < €/2 as long as ¢ < —=. Finally, 5 VAU v v [ ey
%w"% Here the last inequality followmg from that % monotonically decreases

on (zg,zpmg). (See result 2 in clalm . Therefore, )\T 4o < €/2 as long as cdown <
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€/2 $(b|BH x0)
7wty SO|ALzo) "
To summarize, we use c&“" to control the largest possible value for M \PL in phase

I1. As long as c%*™ is small enough, AP# must increase but cannot jump above 7%, after

seeing a long sequence of action b. Furthermore, by choosing =y sufficiently smaller than

doum down

cdown we can guarantee \H ABL < cdown in phase 11. m
Then next lemma is very similar to the previous lemma. The only difference is that we

approach the confounded learning from above.

Lemma 32 With assumption [29, if
¥y > 0,3Ap, 5.t AT <y, B < 4, MBH € [mhy + /2 X7 € (mha, ) (53)

then there exists a vy and ty such that

9 9

T’Y +t0<{b}t0’ATwo) <z 2 T’y +t0({b}tO‘ATﬂ/0) < 2 T’Y -‘rto({b}tO’ATwO) S [TFBH77T*BH + 5)

)\BH

In other words, if we can push society’s belief arbitrarily close to axis— while keeping

NBH above %y, then we can always push the society’s belief to a proper position, from where

tg actions b leads society’s belief into the e—neighborhood.

Proof. For each Az, we construct an auxilliary process A as following:

Ar, = Ar,
i (byAL v )
ABL ABL ¢(b|BL, TP
B _ éHM' %@szrﬁ
\BH A\PH ¢(b|BH, T"P)
A M (b AH, 1
tBj—I_} _ ~tBH¢(| ) ),thTw
\BH A\PH ¢(b|BH, 1)
—U b s U b s L U :
Here 77 = argmax ¢, ysur 1] %, " = argmax,cp,,, s 1| %, and 07 is a

small positive number defined in claim [40]
We have the following claim: V¢ € (0, min{ £/2 2 1), Iyo > 0 and t, such

mu(TBH+E/2)’ TRH+E/2

that
o Kt
+t1
)\BE <cE,)\T it <Tpy te/2 = <cy. (54)
TAVO T’yo“l‘tl
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In this paragraph we prove the above claim. First, by choosing v < ¢ (75, +¢/2) , we

)\AH
can have v: B 7 < . Second, we can verify the existence of ¢; is equivalent to

U BH *
log ¢ — log A/ + log A 1 1  log(mhy +¢/2) S 1 (55)
log COBLTD) & SOBLE™) ' 10 GOBH) log SOIBH.Z"7)
& $UIBHT™) SeIBHTP) OB GOALL) 8 GOIALLY)

Since )\%H € (g +¢/ Z,XBH), as 7 decreases, the left-hand side of |55 increases to +o0,

so t1 certainly exists. From here to the end of this proof, let’s choose a yo(cy) for each

g € (0, min{_— (;Ef 12{ =75 WB;/fs 751). For notation convenience, we write o for Yo(cy).
We claim this intuition is true: 3t € {0,1,...,¢;} such that A7 < 7%, + /2.
In this paragraph, we prove above claim. Let us use I;, as an abbreviation of index set
{0,1,...,t1}. We first assume that Vt € I;;, \BP% > 7%, + /2. Under this assumption, we

have following inductive argument: Vt € I,, — {t;}, if

)\BL /\BL
Tyo+t T70+t )
SBH > )‘T ot = )\T o+t (56)
Too+t TvoJF
then
)\BL )\BL
Ty +t+1 Ty +t+1 5\ > \BH (57)
)\B - )\BH Ty +t+1 = T70+t+11
Ty +t+1 T'yo+t+1

The proof for the inductive argument is as following:

BL \BL — BL
)\T70+t+1 Aot ¢(b|BH, TP) . A7 4t (0| BH, 21, 14) (59)
)‘¥H+t+1 A?HH (O[AL,zP) = AL, S(bJAL, w1, 14)
ABL ABL
By assumption, )\%}Z 4t = Tpy +¢/2. Also from claim , cy > /\?% > %{ Following
Y 1 Y

claim o1 ¢ € [wpg + 0", 1]. Then the inequality follows this, the inductive assumption
NBL

A\BL
Ty +t Ty +t L ZUup ¢(b|BL,33)
v > YL and the definition that 7 = argmax,ci, . 45w 1] o\ BHL) Lhe proof for
0 0

A%’z o1 = AEL 4y is similar. We also verify that inductive assumption holds for ¢ = 0.

Following the inductive proof, we must have )\T = )\T s . However, in claim [54] we
have )\? ot < Ty T /2. This contradicts the assumption that )\T Ve > Ty +¢/2 for all
tel,.
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Now let ¢ty = min{t|)\$g+t < 7y +¢/2}. Then /\$H+t > mpy +¢/2 for all t €
{0,1,...,to — 1}. The above inductive argument still works for ¢t € {0, ...ty — 2}. There-

S\BL )\BL

fore, we have that ¢z > ;\;”,3“1 > A?O: for all t € {0,1,...,tp — 1}. By definition of ¢,
Yot Y0

)\%Ij” >rhyt+e/2forallt € {0,1,...,tg—1}. Use claimmagain, 7 g4t € [Ty +0"P, 1] for

allt € {0,1,... . ty—1}. Since 8UBD < 1 for all & > wpy, we have M, | < NI < X7

AEE D VS ) ~BH
Tygtto— Yo tto— up up
Furthermore, YLl s XBH < cp . Therefore, )\T oHto—1) )‘Tw tto—1 < Cpg A
Tyg+to—1 “Tyo+to-1

To summarize, up to this point, we have proved that: For all small enough ¢, 3 vy and
to(v0,Ty,) such that

wp~BH . —BH
AT»YO-I—to—l < [O,CEP)\ ]2 X [WBH + 5/27)‘ ] (59)

: ~BH -
From assumption , we have A < %=. So we can use lemma to find a ¢ small

enough such that )\T “+to = Tpy- Therefore, A “+to € [TBs Tpg 1 €/2). Furthermore, we
AH BL

A
2 +t
have 90 < ! < ™. So MH < /2 as long as ¢ < —<L Finall JLO =
B S E Ty +to / g E S Thpte/2 Ve B
AL ¢(b|BH & ) u
o +Hto—1 T Ty +t9—1 up ¢(b|BH,x g +46"P) : : ;
cp A< Here the last inequality following from that
N L OIAL g g 1) E $(b[AL.zpu+0"P) quatity &
b|BH
% monotonically decreases on (zgp,3). (See result 2 in Clalm. Therefore, )\TL o

/2 ¢(b|BHxpp+06"P)
mhgte/2 ¢(b|AL,xpr+6uP) "

£/2 as long as cp < u

Lemma 33 If Sha < =5 and sub-sequence t;, such that

ABH(HCr|A) < X7

Then

A (05 1A) = 0055 (B3 [A) = 0
and

$tk(b§:|/\) > xq for sufficiently large ty,.

Proof. Following lemma |20, we must have

MH(EIA) APE(BE|A)

ABH(BEUA) — ABH(pEA)
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If NPH(hEHA) < Y we must have
(05 A) = 0:ATE (B! A) = 0

That xtk(hgj |A) > xq for sufficiently large t; follows directly from claims [21| and . [ ]

Combine previous three lemmas, we have following proposition:

Proposition 34 If D < 5 and sub-sequence ty such that

1—s’
ABH(BCH|A) < X7
Then 3 a finite sequence f)g such that
IA(BEA) — A" <.
—BH —
Proof. If 3\ < %, and sub-sequence t; such that
ABE(hEA) < X1

Then following lemma , Vv > 0, 3T, such that either (1)zg, > mo;)\ﬁH < v, ABL <
VA < gy — /2 or (2) M < MPE <y AR € [nhy — e/2,mhy + €/2]; or (3)
A<y, APE <y AET € [mpy + 5/2,XBH]. In case (1), we cite lemma ; in case (2), Ap,
is in the e—neighborhood; in case (3), we cite lemma |32 =

If there is no such X < 5=, there are two possibilities: either (1) AP (h{*|A) — +oo;
(2) ABH(h{*|A) doesn’t approach +oo, but 3f such that AP (h1[A) > == for all t >
provided that private signal is bounded. Following lemma [27] in both cases we have a
sub-sequence Ty, + (T;)? and we know the limit action frequency in this sub-sequence. In
the following proposition, we make use of this fact to push society belief below a bound
~BH - . .
A < =%, while keep AM# NP negligible.
Proposition 35 If (1) NBH(hS1|A) — 4o00; or (2) private signal is bounded, NP7 (HS"|A)
doesn’t approach 400, but It such that \PH (§1|A) > %= for all t > t. Provided that

log ¢(a|AL,3) —log ¢(a|BL,3) _ logp(a|BH,S) —log ¢p(alAL,S)
log ¢(b|BL,3) — log ¢(b|AL,3) ~ log¢(b|AL,1) —log ¢(b|BH,3)’

(60)

then we can find a finite upper bound XBH, and a finite sequence htco2 (y) for each small v > 0
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such that

MM (BE2IA) < v APE(BE2|A) < (L+7) < APF (052 |A) < A

Zo
1—I0

Proof. Let f, and f;, being as defined in 29 Then condition [60]is equivalent to Jr > 0 s.t.

(¢(G|BH75))J” (¢(b|BH,§))fb( (b|BH, S)) 1.
6aAL,5)’ “G(B[AL,5)’ ‘(bAL,S) ’
¢(a|BL’§) f ¢(b|BL7§) fo ¢(b|BL’S)
(¢(a|AL,§)) (¢(b|AL,§)) (¢(b|AL,§)> < L (61)

Let us pick such a r and fix it through this proof. Since ¢(b|BH,z),¢(b|AL,x), ¢(b|BL,x)

are all continuous in x, we could find a ¥ < s such that

(¢<a’BH71))f <¢(b‘BH7§>)fb( (b|BH, x)) 1:
¢(alAL,S) ¢(b|AL,3) o(b|AL,T) 7
gZﬁ(CL‘BL,E) f ¢<b|BL7§) Io ¢(b|BL7$)
Gaars) Goars) Gearn) < * (62)

We also pick and fix a T throughout this proof.

As argued in lemma in both cases (1) and (2) , Vk € N, 3T}, € N, s.t. 2, € (5 — ,1]
for all ¢ > Tj. In particular, let us choose T} as constructed in lemma 27 For each k and
T}, we can construct an associated auxiliary process as following: Let ATH(T;C)? = Aq 4+ (13,)2,
for each t € {T), + (Tx)* + 1,..., T + (T)> + [7(T%)?]}, define A,’s evolution as following

t+ o(b[AL, ;c)’
N\BL  _ BL¢( |BL, x)

i b $(b|AL,T)’
A\BH _ sBr @(0|BH, T)
t+1 t (blAL .T) :

The idea for this construction is to use A?% to control how fast A®” can increase; and use

MBH to control how fast ABH can decrease.
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For each k and T}, we have that

B . (Tw)?
s O(JALT) _ \pr ¢(b|BL,T)
OIS T 6 (b BL, 7) = "I 9(b] AL, 7)

_ ABL(HTH(Tk)z_mw?wBL,xt>) o0BL7)\""
T t=T}, ¢(f)tcl|AL7$t) ¢(b|AL,f)

i _#b_ ‘e _#a_ . ry (Tk)
o o (QGIBL s\ O (lalBL,si) | U (6(bBL,) (63)
= T\ (b AL, s ¢(a|AL, s ¢(b|AL,T) ’
vefi—1.1] %, a € {a,b}. Here the first inequality just takes care

of the case that r(7};)? is not an integer. The second inequality follows from that z; €

(s — %,1], when ¢ > T,. Recall that i%i\féi; = iEZ‘\fig for z € [5,1]. So we have, for

sufficiently large k and T}, the big term within the curly bracket in [63]is sufficiently close to
#(a|BL,) \ fa [ ¢(b|BL3)\ Jo ( (b|BL,T)\" S .
(¢(G|AL7§)) (qb(b\AL,E)) (¢(b‘AL,§)) , which is strictly below 1 (see .

Similarly, for each k& and T}, we have that

where s;* = argmax

BH
>\Tk+(Tk)2+fr(Tk)21
o) T2 )\ T2 2\
= T\ B(b|AL, s ¢(a|AL, s3%) ¢(b| AL, ) ’
where s;* = ArgMax,efs 1 ] %, a € {a,b}. (Here we use the same notation as in

just to avoid too many notations. ) For sufficiently large k& and Tk, the big term in [64] is

sufficiently close to ((Z((Zl‘ilzg )f“ (%ﬁ“ﬁfg )fb ((Z((Zﬁgg )T, which is strictly below 1.

Now choose and fix a proper k, we have

: BH PR E \BL _
0 AT @2 ez = 05 M AT (g2 ey = 0-
Arbitrarily choose and fix a v > 0. For all
. £/2 £/2 0% -7z 1-% 1-3
0<cy < — :
‘e mm{ng T2/ Tty 1 2/2) 5 3 UALD T g 1- =}

¢(b|BH,1)

20



define X7 = +——, for any 7, let us choose a T}, such that
°E

11
x

N o ey <V

ALz < Apa;
)\AH( )

T+ (T} .

BH <Cg;

Tk+(Tk)2

~BH

~BH _ 3 ~BH
we have A~ < %=. We also have A\ > mgy always holds.

Here because ¢ < 1’75 —

1-5
1—5
up v 1— . up v
Moreover, Cp < —SGALD 3 1mphes that Cp < SPH SUIALL) -
¢(b|BH,1) #(b|BH,1)

We claim: for the choosen T}, there exists a t € {T}, + (T}.)2, ..., Tx + (Tx)* + [r(T3)?]}

. . ~BH
(abbreviate this index set as I, from now on) such that AP# < A7, Assume not, then

z.;\ cn\cn

Vt € Ip, NPH > 3 . Besides, Vt € Iz, , we have jﬁZ < A?’:{+(Tk)2 < ¢ since % <1
always holds. We must have z;, > 7 for all ¢t € I, followmgTsz(fﬁ)nlar argument as in [67]
Because T = argmax ¢y % = argmax,cz % (See claim {4 , we could
build up following inductive argument for all t € I, : that )\BH > \BH and /\BL > ABLimplies
APH > APT and APK > APE. The proof is direct: AP/ = APHSGEAE > \PIHECIERE) >

)\BH¢ b|BH, l't)
o(b|AL,x¢

inequality follows from that z; > 7 for all x € Ir,.

= \Bl ‘1. The first inequality follows from the inductive hypothesis, the second

This inductive argument leads to a contradiction:

SXBH —BH
X < N i) < M e < A

So there must exists a ¢ € I7, such that \P# < N Let ty = min{t € Iy |\PH < XBH}.

Above inductive argument still works for ¢t < ¢y — 1; so we can conclude that )\BL < XFL <

~ AAH ARH 2
BL 2 1 T +(Ty)
>‘Tk+(Tk)2+fr(T 21 <7 for t € {T} + (Ty)>, . .. ,to}. Furthermore, )\f_D?Hl < ﬁ <. Also
k k
BH_ ¢(b|BH,1) BH ¢ObBHzi,—1) BH BH PN AH
Ato—1 GOALT) < Anty SOALar 1) — =\, < PN , 80 Apty < (Z((l;‘lig,ll)). Thus A7) <.
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ABH 4y
Knowing that A, < v, APE, < v, we have 2,1 < A;g—ivﬂ. Therefore
top—1

\BH _ \BH ¢(b|BH,xtO,1)
fo o=l (b AL, xto 1)

t A4y
. ¢(b|BH, )\B’I-(I)—_i__’_l)
> A T
¢(b| AL, )\BI—?—_,'_,YH)
+v +v
B ) ¢(b|BH, A;g—iﬂ) . ¢(b|BH, m)
B ! vy +7
1 1
¢(blAL, m) ¢(b|AL, )\BH—JwH)
H+
¢(b|BH, A;ﬁ—%ll)
> Tpg — BH (66)
¢(blAL, )\B}(}—_i__’_l)
Here the first inequality follows that (:ﬁf w)) monotonically decreasing. The last inequality
\BH
SOIBH )
follows assumption 29, By choosing v small enough 75, — v ;%’él — > 120 (1+7).
¢(b\AL,W)
il
Finally, We can verify that A" < sadzy < 7-
#(b|BH,1) —BH B
Therefore, for any small v > 0, there is a finite A < —%= and a finite sequence of actions
f)CQ such that
X

Zo
A (i [A) < B AP0 IA) < i (14 < AP (hE2|A) <
This sequence starts with h% +( for some large k£ and large Tj; and ends with a long

sequence of action b. m
It is direct to verify that

x
A (057 [A) < B AP IA) < 5 _Oxo(l +7) < A7 (b2 |A)

implies that z;(h;?|A) > xo. Therefore, we can again cite lemma [31| and [32| to conclude

L he
that, with another finite sequence of action b following thOQ, society’s belief is pushed into

the e—neighborhood.
Following are a few computation results which is used in previous proof. The first claim

computes the minimum posterior weight associated to payoff state B, given that current
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weight is « € (xo, 1].
Claim 36 Consider set A = {(pau, pBL, PBH)|T = PBH + PBL, T € (T0, 1]}, let

_ pea®(b|BH, x) + ppro(b|BL, x)
pan®(b|AH, z) + pard(D|AL, z) + ppa¢(b|BH, z) + ppr¢(b|BL, x)’

(D)

where (papg, L, Per) € A. Then

x¢(b|BH, x)
(1 —2)¢(b|AL,x) + xp(b|BH, x)

x(b) >

Proof. Since ppy + ppr, = =, and pag + par = 1 — z, we can rewrite x(b) just in terms
of papg and ppy, where pag € [0,1 — 2| and ppy € [0,2]. Then we compute and find that
% > 0, for the reason that ¢(b|AH, x) — ¢(b|AL,x) < 0 on x € (xg, 1]. So

2¢(b|BL, x) + ppul¢(b|BH, ) — (b| BL, z)]
(1 = 2)¢(b|AL, ) + 2¢(b| BL, x) + ppu[¢(b|BH, x) — ¢(b|BL, z)]

2(b) > 2(b)|pay=0 =
Similarly we compute and find that ﬁx(b)mb{:o < 0, for that ¢(b|BH,x)—¢(b|BL,x) <0
on z € (g, 1]. So

x¢(b|BH, )
() par=0 = T(0)|pan=0ppr=z > 1¢(b|BH, x) + (1 — x)¢(b|AL, z)’

Claim 37 Let §(x) = SGppa—2G0m, then if

1. private signal is unbounded, then §'(x) >0 on z € (0,1).

2. private signal is bounded, then §'(x) > 0 on z € (s,35); and F'(x) =0 on x € (0,s] U
5,1).

Proof. First we compute §'(z) Since f¥(z) = =2 f4(z), we can write

fA($)(pH - pL)

S = GRIBH, ) - GBIAR, o

A(z),

where A(z) = Z2[FB(xo) — paFA(x0)] — =2(1 — pr) FA(x) + (1 — pr ) [FP(x) — FP(20)).
We first show that A(x) > 0 on x € [x¢, 1]. We can verify that A(z¢) > 0 and A(1) > 0.
Furthermore, we compute A'(z) = % [(1—pg)F*(z) + pu F*(x0) — FP(20)]. We can see that
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either (1) A'(x) < 0 on z € [zg,1] or (2) 3 an unique z* € (o, 1] such that A’(z*) = 0. In
the first case, obviously A(z) > 0 on x € [z, 1]. In the second case, We can see that A(x)
achieves minimum (1 — pg)[F?(z*) — FB(z0)] > 0 at z*.

Furthermore, we observe that lim, o+ A(z) — +o00, and A'(x) < 0 on = € (0,z0]. So
A(x) > 0 on (0, x¢] as well.

If private signal is unbounded, then f4(z) > 0 on z € (0,1). Thus §'(z) > 0 on (0,1). If
private signal is bounded, then f4(x) > 0 on x € (s,3); and f4(z) =0 on z € (0,s] U [5,1).

And the second conclusion follows directly. m

Claim 38 ¢(O|AH.z) - 1+pH[FA(xo)—FB(xo)] < . 0(a|AH ) > 14 pr [FB(z0)—F4(x0)] > 1.

#(b|BH,x) — pa FB(x0)+(1-pm) ’ #(a|BH,x) — pu[1—FB(x0)]+(1—px)
Proof.
SOlAH, z) . _ pu[F*(x0) — FP(x0)] + (1 — pg)[F*(x) — FP ()]
o(b|BH, z) puFB(z0) + (1 — pu)F'P(z)
< pulF* (x0) = F”(x0)]
= puFP(xo) + (1 —pu)FB(2)
< pulF* (o) — FP ()]
= puFB(xo) + (1 —pm)

The other inequality can be similarly verified. m

Claim 39 If z € [zo, 1], then

¢(b|AH, x) _ max{¢(b|AH, x9) = $(b|BL, x9), $(b|AH,1) — 6(b|BL, 1)} _
o(b|BL,z) prFB(zo) + (1 —pr)

o(a|AH, x) 1_ max{¢(a|AH, zq) — ¢(a|BL, o), ¢(a|AH,1) — ¢(a|BL,1)} o1
¢(a|BL, x) pr[l = F5(xo)l + (1 = pr)

Proof. Let f(z) = ¢(b|AH,x) — ¢(b|BL,x). It is direct to verify that f(zp) < 0 and
f(1) < 0. Furthermore, f'(z) = f4(x)[(1—pg)— (1—pr)=~]. If private signal is unbounded,
then (1 — py) — (1 — pr)=2 strictly increases from (1 — py) — (1 — pL)% to 1 — py.
Depends on whether (1 — py) — (1 — pL)% is negative, f(x) either strictly increases or

reaches an unique minimum somewhere between xy and 1. If private signal is bounded, then

(1—pg)—(1—pr) =2 strictly increases from (1—py)—(1—py) 1;;)”0 to (1—py)—(1—pr) =2 If
(1—pu)—(1—pr)2 <0, then f(z) strictly decreases on [z, 1]. If (1—pH)—(1—pL)? > 0,
then f(z) either strictly increases or reaches an unique minimum somewhere between xy and
1.
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Therefore, f(z) < max{¢(b|AH,xo) — ¢(b|BL,xq), ¢(b|AH,1) — ¢(b|BL,1)}. The first
inequality follows directly. The verification of the second inequality is very similar, for the
reason that ¢(a|AH,x) — ¢(a|BL,x) = —f(x).

€/2 €/2
mpu(TEH+E/2)’ TpH+E/2
> xgy. For notatzon convenience, we denote 1 as xgy + 0"P.

Claim 40 If \P" > 7y + 5 and ABZ < ¢ < min{
1

}, then x; >

I4cl+

1+cy+

W ”BHJFE/Z
Proof. We have
ABL
)\tBH + )\tBL 1+ )\BH
Ty = AH . \BL . \BH _ AH
1
1_+'At +_At +_At \BH +_ABH +‘ABH +1
t t t
1 1
> > : (67)
1 )\AH up #
W+)j§sﬁ+1 1+CE+7TBH+6/2
. . . up €/2 : : 1 TBH
It is direct to verify that c; < praey ey i equivalent to that ; T F—— > o .
1 down
Claim 41 If\PH < rmpy—e/2 and 2 )\BH <cp < - E/ 5. Thenxy < e < agp.
H—E/ 14-c% R e—
. . 1 down
For notation convenience, we denote dm,:CE T as xpy — 0w,
Lteg RR—
Proof. We have
/\BL )\BL
)\BH + 1 )\BH + 1
Ty = 1 <
NPT + W + ,\FW +1 W + /\tBW +1
1+ Cdown
down
1 + C + TBH— 6/2
down e/2 : : 1+Cﬁwn TBH
It is direct to verify that c"" < o3 1S equivalent to that - T < Fand [

Claim 42 We have following results:

1. % is strictly increasing on (s,S), and is constant on (0,s) U (5,1).
2. % is strictly increasing on (x¢,S), and is constant on (5,1).

3. % is strictly decreasing on (vgm,S), and is constant on (3,1).

4. % is weakly increasing on x € (1 — e, 1) for any small enough €.
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Proof. To see the first result, we compute %Zf(( = fB(x)FB(x0)(py — pr), which is

strictly positive on (s,5) and 0 on (0,s) U (5,1).
To see the second result, we compute that dd zéﬂgéi)) = ¢(b]‘cgg{)m)}gg( ), where g(x) =
[(1 = pr)p(b|BH,z) — (1 — pr)(b|AL, 2)1=2]. We can prove that g(z) > 0 on = € (z,3)

as following: first, as © — o, we have g(z) — (1 — pr)FP(zo) — (1 — pu)F4(z9) =22 0,

which is strictly positive since F5(zo) = [ LAdFA(t) > =20 FA(:L'O) second, we Compute
g'(x) = (1 —pu)o(b|AL,x)5 > 0 on z € (0, 1).

To see the third result, we similarly compute %ﬁ%gﬁig = ([;zafq)gz)(ﬁ)h(x), where h(x) =

=2¢(b|AL, x) — ¢(b|BL,x). We can prove that h(z) < 0 on z € (zpy,1) as following:
first, we compute 1/(z) = —5¢(b|AL,z) < 0 on = € (zppy,1); second, we can prove that
as r — Tppy, g(x) — HJQZS(MAL,IBH) — ¢(b|BL,xpy) < 0. Here, we need to use the
fact that FP(x) = [ 1ttdFA( ) > L=£FA(x) for all # € (0,5). Then ZZELG(H|AL, x) —

¢(b|BL,xpy) = pL[l 88 [PA(10) — FP(20)] + (1 — pr) 55222 FA(wpn) — FP(xpn)], where

TBH TBH

1— zBHFA( o) — FB( 0) < %FA(IEO) _ FB(ZEO) < 0; and 1;;ﬁ%FA(:EBH — FB(xBH)) <0.

TBH

To see the fourth result, we compute %igi\ﬁfg = (1 — po)fHz)[-E20(a|lAL, z) +

¢(a|BL,x)]. If private signal is of bounded strength, then obvious this derivative is 0;

if private signal is of unbounded strength, then we can always find a small enough ¢ to
guarantee that —=2¢(a|AL,z) + ¢(a|BL,z) > 0. m
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